Skip to main content
Log in

Plasma-Tailored Heterostructured Ni-Ni3N Nanosheets for Enhanced Overall Water Splitting

  • Topical Collection: Advanced Metal Ion Batteries
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Heterostructured frameworks have received considerable research interest because of the superior integrity of different components and hence favorable electrocatalytic behavior. Currently, Ni-Ni3N-based heterostructures are regarded as one of the most essential candidates for electrocatalytic water splitting. However, most reported heterostructures were achieved based on a thermal technique, leading to restricted heterostructured components for electrochemical behavior. Here, we have provided a facile plasma strategy to modulate hierarchical Ni-Ni3N nanostructures (hNiN) for optimized water splitting. By controlling the plasma processing duration, hNiN-based nano-frameworks have delivered maximized activity in hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The hNiN-300 can deliver a potential of 150 mV with the current of 10 mA cm−2 (η10) of HER, while the hNiN-30 exhibits the best OER catalytic activity with the current density of 167 mV at 10 mA cm−2 (η10). Also, the hNiN have excellent cyclic performances with little activity degradation after cycling. Based on experimental characterizations and computational analysis, the good water splitting behavior of hNiN can be attributed to the heterostructural formation between Ni3N and Ni. Such work can provide a novel pathway to easily modulate nitride-based heterostructures for superior electrochemical water splitting.

Graphical Abstract

Plasma strategy can easily modulate hierarchical Ni-Ni3N heterostructures for optimized electrocatalytic water splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Ghosh and R.N. Basu, Multifunctional nanostructured electrocatalysts for energy conversion and storage: current status and perspectives. Nanoscale 10, 11241–11280 (2018).

    Article  CAS  Google Scholar 

  2. Y. Zhou, Z. Wang, Z. Pan, L. Liu, J. Xi, X. Luo, and Y. Shen, Exceptional performance of hierarchical Ni-Fe (hydr)oxide@NiCu electrocatalysts for water splitting. Adv. Mater. 31, e1806769 (2019).

    Article  Google Scholar 

  3. C. Li, C. Zheng, F. Cao, Y. Zhang, and X. Xia, The development trend of graphene derivatives. J. Electron. Mater. 51, 4107–4114 (2022).

    Article  CAS  Google Scholar 

  4. S. Ghosh, P. Kar, N. Bhandary, S. Basu, T. Maiyalagan, S. Sardar, and S.K. Pal, Reduced graphene oxide supported hierarchical flower like manganese oxide as efficient electrocatalysts toward reduction and evolution of oxygen. Int. J. Hydrog. Energy. 42, 4111–4122 (2017).

    Article  CAS  Google Scholar 

  5. F. Yu, H. Zhou, Y. Huang, J. Sun, F. Qin, J. Bao, W.A. Goddard, S. Chen, and Z. Ren, High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. Nat. Commun. 9, 2551 (2018).

    Article  Google Scholar 

  6. Z. Wang, C. Zhu, H. Tan, J. Liu, L. Xu, Y. Zhang, Y. Liu, X. Zou, Z. Liu, and X. Lu, Understanding the synergistic effects of cobalt single atoms and small nanoparticles: enhancing oxygen reduction reaction catalytic activity and stability for Zinc-air batteries. Adv. Funct. Mater. 31, 2104735 (2021).

    Article  CAS  Google Scholar 

  7. W. Sheng, Z. Zhuang, M. Gao, J. Zheng, J.G. Chen, and Y. Yan, Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat. Commun. 6, 5848 (2015).

    Article  CAS  Google Scholar 

  8. Q. Yao, B. Huang, N. Zhang, M. Sun, Q. Shao, and X. Huang, Channel-rich RuCu nanosheets for pH-universal overall water splitting electrocatalysis. Angew. Chem. Int. Ed. Engl. 58, 13983–13988 (2019).

    Article  CAS  Google Scholar 

  9. L. Zhai, X. She, L. Zhuang, Y. Li, R. Ding, X. Guo, Y. Zhang, Y. Zhu, K. Xu, H.J. Fan, and S.P. Lau, Modulating built-in electric field via variable oxygen affinity for robust hydrogen evolution reaction in neutral media. Angew. Chem. Int. Ed. Engl. 61, e202116057 (2022).

    Article  CAS  Google Scholar 

  10. Y. Yuan, S. Adimi, X. Guo, T. Thomas, Y. Zhu, H. Guo, G.S. Priyanga, P. Yoo, J. Wang, J. Chen, P. Liao, J.P. Attfield, and M. Yang, A surface-oxide-rich activation layer (SOAL) on Ni2Mo3N for a rapid and durable oxygen evolution reaction. Angew. Chem. Int. Ed. Engl. 59, 18036–18041 (2020).

    Article  CAS  Google Scholar 

  11. S. Zhao, M. Li, M. Han, D. Xu, J. Yang, Y. Lin, N.-E. Shi, Y. Lu, R. Yang, B. Liu, Z. Dai, and J. Bao, Defect-rich Ni3FeN nanocrystals anchored on N-doped graphene for enhanced electrocatalytic oxygen evolution. Adv. Funct. Mater. 28, 1706018 (2018).

    Article  Google Scholar 

  12. R. Zhang, J. Huang, G. Chen, W. Chen, C. Song, C. Li, and K. Ostrikov, In situ engineering bi-metallic phospho-nitride bi-functional electrocatalysts for overall water splitting. Appl. Catal. B. 254, 414–423 (2019).

    Article  CAS  Google Scholar 

  13. Y. Zhang, B. Ouyang, J. Xu, G. Jia, S. Chen, R.S. Rawat, and H.J. Fan, Rapid synthesis of cobalt nitride nanowires: highly efficient and low-cost catalysts for oxygen evolution. Angew. Chem. Int. Ed. Engl. 55, 8670–8674 (2016).

    Article  CAS  Google Scholar 

  14. Z. Wang, X. Jin, C. Zhu, Y. Liu, H. Tan, R. Ku, Y. Zhang, L. Zhou, Z. Liu, S.J. Hwang, and H.J. Fan, Atomically dispersed Co2-N6 and Fe-N4 costructures boost oxygen reduction reaction in both alkaline and acidic media. Adv. Mater. 33, e2104718 (2021).

    Article  Google Scholar 

  15. X. Tian, J. Luo, H. Nan, H. Zou, R. Chen, T. Shu, X. Li, Y. Li, H. Song, S. Liao, and R.R. Adzic, Transition metal nitride coated with atomic layers of Pt as a low-cost, highly stable electrocatalyst for the oxygen reduction reaction. J. Am. Chem. Soc. 138, 1575–1583 (2016).

    Article  CAS  Google Scholar 

  16. M. Yang, Z. Cui, and F.J. DiSalvo, Mesoporous chromium nitride as a high performance non-carbon support for the oxygen reduction reaction. Phys. Chem. Chem. Phys. 15, 7041–7044 (2013).

    Article  CAS  Google Scholar 

  17. Z. Cui, M. Yang, and F.J. DiSalvo, Mesoporous Ti0.5Cr0.5N supported PdAg nanoalloy as highly active and stable catalysts for the electro-oxidation of formic acid and methanol. ACS. Nano 8, 6106–6113 (2014).

    Article  CAS  Google Scholar 

  18. C.G. Morales-Guio, L.A. Stern, and X. Hu, Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 43, 6555–6569 (2014).

    Article  CAS  Google Scholar 

  19. Y. Guo, J. Tang, Z. Wang, Y.-M. Kang, Y. Bando, and Y. Yamauchi, Elaborately assembled core-shell structured metal sulfides as a bifunctional catalyst for highly efficient electrochemical overall water splitting. Nano Energy 47, 494–502 (2018).

    Article  CAS  Google Scholar 

  20. Y. Guo, L. Gan, C. Shang, E. Wang, and J. Wang, A cake-style CoS2@MoS2/RGO hybrid catalyst for efficient hydrogen evolution. Adv. Funct. Mater. 27, 1602699 (2017).

    Article  Google Scholar 

  21. Y. Gong, L. Wang, H. Xiong, M. Shao, L. Xu, A. Xie, S. Zhuang, Y. Tang, X. Yang, Y. Chen, and P. Wan, 3D self-supported Ni nanoparticle@N-doped carbon nanotubes anchored on NiMoN pillars for the hydrogen evolution reaction with high activity and anti-oxidation ability. J. Mater. Chem. A. 7, 13671–13678 (2019).

    Article  CAS  Google Scholar 

  22. M. Gong, W. Zhou, M.C. Tsai, J. Zhou, M. Guan, M.C. Lin, B. Zhang, Y. Hu, D.Y. Wang, J. Yang, S.J. Pennycook, B.J. Hwang, and H. Dai, Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun. 5, 4695 (2014).

    Article  CAS  Google Scholar 

  23. J. Li, W. Zhao, F. Huang, A. Manivannan, and N. Wu, Single-crystalline Ni(OH)2 and NiO nanoplatelet arrays as supercapacitor electrodes. Nanoscale 3, 5103 (2011).

    Article  CAS  Google Scholar 

  24. K.N.S. Sai, Y. Tang, L. Dong, X.Y. Yu, and Z. Hong, N2 plasma-activated NiO nanosheet arrays with enhanced water splitting performance. Nanotechnology 31, 455709 (2020).

    Article  CAS  Google Scholar 

  25. B. Ouyang, Y. Zhang, X. Xia, R.S. Rawat, and H.J. Fan, A brief review on plasma for synthesis and processing of electrode materials. Mater. Today Nano 3, 28–47 (2018).

    Article  Google Scholar 

  26. X. Qin, D. Kim, and Y. Piao, Metal-organic frameworks-derived novel nanostructured electrocatalysts for oxygen evolution reaction. Carbon Energy 3, 66–100 (2020).

    Article  Google Scholar 

  27. J.Y. Chang, J.M. Lin, L.F. Su, and C.F. Chang, Improved performance of CuInS2 quantum dot-sensitized solar cells based on a multilayered architecture. ACS Appl. Mater. Interfaces 5, 8740–8752 (2013).

    Article  CAS  Google Scholar 

  28. I. Elizabeth, A.K. Nair, B.P. Singh, and S. Gopukumar, Multifunctional Ni-NiO-CNT Composite as high performing free standing anode for Li ion batteries and advanced electro catalyst for oxygen evolution reaction. Electrochimi. Acta. 230, 98–105 (2017).

    Article  CAS  Google Scholar 

  29. J. Huang, Y. Sun, X. Du, Y. Zhang, C. Wu, C. Yan, Y. Yan, G. Zou, W. Wu, R. Lu, Y. Li, and J. Xiong, Cytomembrane-structure-inspired active Ni-N-O interface for enhanced oxygen evolution reaction. Adv. Mater. 30, e1803367 (2018).

    Article  Google Scholar 

  30. B. Ouyang, Y. Zhang, Z. Zhang, H.J. Fan, and R.S. Rawat, Nitrogen-plasma-activated hierarchical nickel nitride nanocorals for energy applications. Small 13, 1604265 (2017).

    Article  Google Scholar 

  31. B. Ouyang, D. Chao, G. Jia, Z. Zhang, E. Kan, H.J. Fan, and R.S. Rawat, C-plasma derived precise volumetric buffering for high-rate and stable alloying-type energy storage. Nano Energy 80, 105557 (2021).

    Article  CAS  Google Scholar 

  32. Z.-J. Chen, G.-X. Cao, L.-Y. Gan, H. Dai, N. Xu, M.-J. Zang, H.-B. Dai, H. Wu, and P. Wang, Highly dispersed platinum on honeycomb-like NiO@Ni film as a synergistic electrocatalyst for the hydrogen evolution reaction. ACS Catal. 8, 8866–8872 (2018).

    Article  CAS  Google Scholar 

  33. B. Ouyang, Y. Zhang, Y. Wang, Z. Zhang, H.J. Fan, and R.S. Rawat, Plasma surface functionalization induces nanostructuring and nitrogen-doping in carbon cloth with enhanced energy storage performance. J. Mater. Chem. A. 4, 17801–17808 (2016).

    Article  CAS  Google Scholar 

  34. Y. Zhang, B. Ouyang, J. Xu, S. Chen, R.S. Rawat, and H.J. Fan, 3D Porous hierarchical nickel-molybdenum nitrides synthesized by RF plasma as highly active and stable hydrogen-evolution-reaction electrocatalysts. Adv. Energy. Mater. 6, 1600221 (2016).

    Article  Google Scholar 

  35. A.K. Shah, S. Bhowmick, D. Gogoi, N.R. Peela, and M. Qureshi, Hollow cuboidal MnCo2O4 coupled with nickel phosphate: a promising oxygen evolution reaction electrocatalyst. Chem. Commun. 57, 8027–8030 (2021).

    Article  CAS  Google Scholar 

  36. X. Li, R. Zhang, Y. Luo, Q. Liu, S. Lu, G. Chen, S. Gao, S. Chen, and X. Sun, A cobalt–phosphorus nanoparticle decorated N-doped carbon nanosheet array for efficient and durable hydrogen evolution at alkaline pH. Sustain. Energ. Fuels. 4, 3884–3887 (2020).

    Article  CAS  Google Scholar 

  37. Y. Zhang, B. Ouyang, K. Xu, X. Xia, Z. Zhang, R.S. Rawat, and H.J. Fan, Prereduction of metal oxides via carbon plasma treatment for efficient and stable electrocatalytic hydrogen evolution. Small 14, e1800340 (2018).

    Article  Google Scholar 

  38. Q. Kong, W. Feng, S. Ma, F. Sun, X. Xie, and C. Sun, Hydrothermal synthesis of nanoporous NiO rods self-supported on Ni foam as efficient electrocatalysts for hydrogen evolution reaction. Jom. 71, 621–625 (2018).

    Article  Google Scholar 

  39. M. Zhou, Q. Weng, Z.I. Popov, Y. Yang, L.Y. Antipina, P.B. Sorokin, X. Wang, Y. Bando, and D. Golberg, Construction of polarized carbon-nickel catalytic surfaces for potent, durable, and economic hydrogen evolution reactions. ACS Nano 12, 4148–4155 (2018).

    Article  CAS  Google Scholar 

  40. A. Xie, J. Zhang, X. Tao, J. Zhang, B. Wei, W. Peng, Y. Tao, and S. Luo, Nickel-based MOF derived Ni@NiO/N-C nanowires with core-shell structure for oxygen evolution reaction. Electrochim. Acta. 324, 134814 (2019).

    Article  CAS  Google Scholar 

  41. J. Liang, Y.-Z. Wang, C.-C. Wang, and S.-Y. Lu, In situ formation of NiO on Ni foam prepared with a novel leaven dough method as an outstanding electrocatalyst for oxygen evolution reactions. J. Mater. Chem. A. 4, 9797–9806 (2016).

    Article  CAS  Google Scholar 

  42. S. Klaus, M.W. Louie, L. Trotochaud, and A.T. Bell, Role of catalyst preparation on the electrocatalytic activity of Ni1xFexOOH for the oxygen evolution reaction. J. Phys. Chem. C. 119, 18303–18316 (2015).

    Article  CAS  Google Scholar 

  43. Y. Zhang, B. Ouyang, G. Long, H. Tan, Z. Wang, Z. Zhang, W. Gao, R.S. Rawat, and H.J. Fan, Enhancing bifunctionality of CoN nanowires by Mn doping for long-lasting Zn-air batteries. Sci. China. Chem. 63, 890–896 (2020).

    Article  CAS  Google Scholar 

  44. H. Li, X. Zhu, Q. Tang, S. Wang, and J. Yu, Three-dimensional NiFe layered double hydroxide nanowire/nanoporous Ni/Nickel foam for efficient oxygen evolution. J. Electrochem. Soc. 167, 146513 (2020).

    Article  CAS  Google Scholar 

  45. Y. Yang, M. Yuan, H. Li, G. Sun, and S. Ma, Controllable synthesis of ultrathin Co9S8 nanosheets as a highly efficient electrocatalyst for overall water splitting. Electrochim. Acta. 281, 198–207 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study at Nanjing University of Science and Technology is by China Postdoctoral Science Foundation (No. 2021M701718), by the NSFC (11774173), and by the Fundamental Research Funds for the Central Universities (No. 30915011203, No. 30918011334, No. 30919011248), China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Ouyang or Erjun Kan.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflict of financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1022 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Qiao, F., Sun, C. et al. Plasma-Tailored Heterostructured Ni-Ni3N Nanosheets for Enhanced Overall Water Splitting. J. Electron. Mater. 52, 1740–1748 (2023). https://doi.org/10.1007/s11664-022-10150-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10150-7

Keywords

Navigation