Skip to main content
Log in

Defect Research in Cs2LiYCl6:Ce Crystal Scintillators

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

As a promising material for dual γ-ray and neutron detection, Cs2LiYCl6:Ce (CLYC:Ce) has been increasingly studied and developed. In this work, CLYC:Ce is grown by two different growth methods, edge-defined film-fed growth (EFG) and the vertical Bridgman method. The phase segregation, macroscopic morphology, microscopic defects, trap-state density and radioluminescence spectra of CLYC:Ce are recorded and analyzed in detail. Because of the different raw material ratios, different second phases appear in the crystal growth process, which shows the phase segregation in the crystal. In the process of crystal growth, there are obvious cracks, bubbles, and inclusion and agglomeration phenomena in the crystal. We speculate that the reasons for these issues include inadequate mixing of the melt, the mismatch of temperature field and the excessive growth rate or excessive cooling rate. The high-quality CLYC:Ce has high carrier mobility (21.3390 cm2V−1 s−1) and ultra-low trap-state density (4.0681 × 108 cm−3). According to the radioluminescence spectra, only peaks in the range of 330–450 nm exist in the whole temperature range, corresponding to Ce3+ component luminescence. With the increase in temperature, the emission peaks show a slight red-shift and the full width at half maximum (FWHM) generally shows an increasing trend. In the high-temperature region, the intensity of the main peak at 360 nm gradually decreases, while the intensity of the weak peak at 435 nm gradually increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Q. Wang and G. Ren, Recent development on elpasolite scintillation crystals for neutron detection. J. Chin. Ceram. Soc. 44, 457–463 (2016).

    CAS  Google Scholar 

  2. C.M. Combes, P. Dorenbos, C.W.E. van Eijk, K.W. Kramer, and H.U. Gudel, Optical and scintillation properties of pure and Ce3+-doped Cs2LiYCl6 and Li3YCl6: Ce3+ crystals. J. Lumin. 82, 299–305 (1999).

    Article  CAS  Google Scholar 

  3. R. Hawrami, C. Hines, I. Abselem, V. Biteman, J. Vaghini, J. Glodo, P. O'Dougherty, K. S. Shah, Nerine Cherepy, Stephen Payne, Arnold Burger, Lynn Boatner, Latest Advances in Large Diameter SrI:Eu & CLYC:Ce Scintillators for Isotope Identification. SPIE Conference on Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XIVSan Diego, CA, (2012).

  4. W.M. Higgins, J. Glodo, U. Shirwadkar, A. Churilov, E. Van Loef, R. Hawrami, G. Ciampi, C. Hines, and K.S. Shah, Bridgman growth of Cs2LiYCl6: Ce and Li-6-enriched (Cs2LiYCl6)-Li-6: Ce crystals for high resolution gamma ray and neutron spectrometers. J. Cryst. Growth. 312, 1216–1220 (2010).

    Article  CAS  Google Scholar 

  5. Y.Y. Hou, Q. Gui, C.S. Zhang, L. Yang, H.P. Yuan, S. Liu, G.H. Ren, and M.R. Zhang, Scintillation properties of Cs2LiYCl6: Ce crystal for neutron and gamma dual detection. J. Synth. Cryst. 50, 1933–1939 (2021).

    Google Scholar 

  6. M.B. Smith, T. Achtzehn, H.R. Andrews, E.T.H. Clifford, H. Ing, and V.D. Kovaltchouk, Fast neutron spectroscopy using Cs2LiYCl6: Ce (CLYC) scintillator. IEEE. Trans. Nucl. Sci. 60, 855–859 (2013).

    Article  CAS  Google Scholar 

  7. J. Glodo, R. Hawrami, and K.S. Shah, Development of Cs2LiYCl6 scintillator. J. Cryst. Growth. 379, 73–78 (2013).

    Article  CAS  Google Scholar 

  8. F.L. Ruta, S. Swider, S. Lam, and R.S. Feigelson, Understanding phase equilibria and segregation in Bridgman growth of Cs2LiYCl6 scintillator. J. Mater. Res. 32, 2373–2380 (2017).

    Article  CAS  Google Scholar 

  9. H. Seifert, and D. Büchel, Ternäre chloride in den systemen ACl/YCl3 (A= Cs, Rb, K, Na). Z. Anorg. Allg. Chem. 624, 342–348 (1998).

    Article  CAS  Google Scholar 

  10. S. H. Wang, Crystal growth and scintillation properties study of Cs2LiYCl6:Ce for neutron detection. chinese academy of science (Shanghai institute of Creamics). (2020)

  11. X. He, G. Zhao, X. Zeng, M. Jie, and S. Zhou, Observation on macro-defects in Ce:YAG scintillation crystal grown by temperature gradient technique (TGT). J. Synth. Cryst. 33, 213–16 (2004).

    CAS  Google Scholar 

  12. W. M. Chen, H. Li, H. L. Wang, J. R. Chen, Study on the Defects in GAGG:Ce Scintillation Crystal, vol. 137 (China Non-metallic Minerals Industry, 2019) pp. 16–19.

  13. L. Qin, S. Lu, Y. Li Huan, H. Shi, and G. Ren, Growth and study on defects of LSO: Ce scintillation crystal. J. Synth. Cryst. 33, 999–1003 (2004).

    CAS  Google Scholar 

  14. P. Chen, R. Wei, L. Jiang, S. Yang, Y. Chen, Z. Wang, H. Yu, and H. Chen, Crystal defects of Li2MoO4 scintillators grown by Bridgman method. J. Cryst. Growth. 500, 80–84 (2018).

    Article  CAS  Google Scholar 

  15. X. Li, Growth and X-ray Detection Performance of Quasi-perovskite Cs3Bi2Br9 Single Crystals (Jinan: Shandong University, 2021).

    Google Scholar 

  16. Y. Liu, Y. Zhang, K. Zhao, Z. Yang, J. Feng, X. Zhang, K. Wang, L. Meng, H. Ye, M. Liu, and S. Liu, A 1300 mm(2) ultrahigh-performance digital imaging assembly using high-quality perovskite single crystals. Adv. Mater. 30, 1707314 (2018).

    Article  Google Scholar 

  17. D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P.A. Dowben, O.F. Mohammed, E.H. Sargent, and O.M. Bakr, Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science. 347, 519–522 (2015).

    Article  CAS  Google Scholar 

  18. D. Bartesaghi, A.H. Slavney, M.C. Gelvez-Rueda, B.A. Connor, F.C. Grozema, H.I. Karunadasa, and T.J. Savenije, Charge carrier dynamics in Cs2AgBiBr6 double perovskite. J. Phys. Chem. C. 122, 4809–4816 (2018).

    Article  CAS  Google Scholar 

  19. J.Y. Wang, Synthesis and Properties Explorations of Several Luminescent Materials with Rare Earth ions and Defects as Emission Centers (Baoding: Hebei University, 2015).

    Google Scholar 

  20. D.A. Spassky, M.G. Brik, N.S. Kozlova, A.P. Kozlova, E.V. Zabelina, O.A. Buzanov, and A. Belsky, Luminescent, optical and electronic properties of La3Ta0.5Ga5.5O14 single crystals grown in different atmospheres. J. Lumin. 177, 152–159 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the support from the National Natural Science Foundation of China [grant numbers 51772171 and 62075116].

Funding

National Natural Science Foundation of China, 51772171, Jing Li, 62075116, Jing Li

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Wang, B., Jia, X. et al. Defect Research in Cs2LiYCl6:Ce Crystal Scintillators. J. Electron. Mater. 52, 1958–1967 (2023). https://doi.org/10.1007/s11664-022-10147-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10147-2

Keywords

Navigation