Skip to main content
Log in

Influence of Sintering Temperature Strategy on Structural, Dielectric, and Resistive Switching in Bulk Ba0.7Sr0.3TiO3 Ceramics

  • Topical Collection: Advanced Materials for Energy Generation and Storage
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We introduce a modified sintering approach to investigate the microstructure, dielectric, and resistive switching (RS) properties of bulk Ba0.7Sr0.3TiO3 (BST) ceramics. The ceramics were prepared using a solid-state-reaction method, and then sintered using modified double-step sintering (DS) processes, as well as conventional single-step sintering (CSS) at different peak temperatures (1250°C and 1350°C). To find the phase purity, lattice parameters, and tetragonality of the samples, x-ray diffraction patterns were fitted with the pseudo-Voigt function in the FullProf software. With the help of the software, bond angles and bond lengths were found for all the ceramics. Furthermore, Raman spectrum analysis was performed to confirm the samples' structural variations. The microstructure images of the samples show that the grain size was reduced and the grain size distribution was improved for the DS-processed ceramics as compared to the CSS-processed ceramics. The dielectric properties of the BST ceramic capacitors were investigated in a wide range of frequencies and temperatures. All the BST ceramics displayed humps at near-room temperature, corresponding to tetragonal–cubic phase transitions, and a small shift in transition temperature towards higher temperature regions for the DS ceramics compared with the CSS ceramics was observed due to structural modification by a grain size effect. The metal–insulator–metal (MIM) structures, so-called memristors, were designed with these dielectric ceramics. A bipolar RS behavior was observed in these MIM structures which were confirmed through current–voltage (I–V) characteristics. The improved RS in these structures is the result of the migration and redistribution of cations, such as oxygen ions and oxygen vacancies ,as well as the ferroelectric domain orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G. Zhou, Z. Wang, F. Bai Sun, L. Zhou, H. Sun, X. Zhao, X. Hu, J. Peng, H. Yan, W. Wang, J. Wang, B. Li, D. Yan, Y. Kuang, L. Wang, and S.D. Wang, Volatile and nonvolatile memristive devices for neuromorphic computing. Adv. Electron. Mater. 8, 2101127 (2022).

    Article  CAS  Google Scholar 

  2. S. Kaeriyama, T. Sakamoto, H. Sunamura, M. Mizuno, H. Kawaura, T. Hasegawa, K. Terabe, T. Nakayama, and M. Aono, A nonvolatile programmable solid-electrolyte nanometer switch. IEEE J. Solid-State Circuits 40, 168 (2005).

    Article  Google Scholar 

  3. A.A. Minnekhanov, A.V. Emelyanov, D.A. Lapkin, K.E. Nikiruy, B.S. Shvetsov, A.A. Nesmelov, V.V. Rylkov, V.A. Demin, and V.V. Erokhin, Parylene based memristive devices with multilevel resistive switching for neuromorphic applications. Sci. Rep. 9, 10800 (2019).

    Article  Google Scholar 

  4. Z. Wang, L. Wang, M. Nagai, L. Xie, M. Yi, and W. Huang, Nanoionics-enabled memristive devices: strategies and materials for neuromorphic applications. Adv. Electron. Mater. 3, 1600510 (2017).

    Article  Google Scholar 

  5. V. Gupta, S. Kapur, S. Saurabh, and A. Grover, Resistive random Access memory: a review of device challenges. IETE Tech. Rev. 37, 377 (2020).

    Article  Google Scholar 

  6. Z. Fan, L. Li, X. Mei, F. Zhao, H. Li, X. Zhuo, X. Zhang, Y. Lu, L. Zhang, and M. Liu, Multilayer ceramic film capacitors for high-performance energy storage: progress and outlook. J. Mater. Chem. A 9, 9462 (2021).

    Article  CAS  Google Scholar 

  7. T. Zheng, J. Wu, D. Xiao, and J. Zhu, Recent development in lead-free perovskite piezoelectric bulk materials. Prog. Mater. Sci. 98, 552 (2018).

    Article  CAS  Google Scholar 

  8. A.R. Jayakrishnan, P.V.K. Yadav, J.P.B. Silva, and K.C. Sekhar, Microstructure tailoring for enhancing the energy storage performance of 0.98[0.6Ba(Zr0.2Ti0.8)O3-0.4(Ba0.7Ca0.3)TiO3]-0.02BiZn1/2Ti1/2O3 Ceramic Capacitors. J.Sci.: Adv. Mater. Devices 5, 119–124 (2020). https://doi.org/10.1016/j.jsamd.2019.12.001.

    Article  Google Scholar 

  9. M. Zhou, R. Liang, Z. Zhou, and X. Dong, Novel BaTiO3-based lead-Free ceramic capacitors featuring high energy storage density, high power density, and excellent stability. J. Mater. Chem. C 6, 8528 (2018).

    Article  CAS  Google Scholar 

  10. H. Yang, C. Zhou, X. Liu, Q. Zhou, G. Chen, H. Wang, and W. Li, Structural, microstructural and electrical properties of BiFeO3–BaTiO3 ceramics with high thermal stability. Mater. Res. Bull. 47, 4233 (2012).

    Article  CAS  Google Scholar 

  11. E. Salernitano, S. Grilli, F. Mazzanti, P. Fabbri, and G. Magnani, Definition of the parameters for the densification of ceramics by two-step solid state sintering. Open Ceram. 9, 100242 (2022).

    Article  CAS  Google Scholar 

  12. Y. Dong, H. Yang, L. Zhang, X. Li, D. Ding, X. Wang, J. Li, J. Li, and I.-W. Chen, Ultra-uniform nanocrystalline materials via two-step sintering. Adv. Funct. Mater. 31, 2007750 (2021).

    Article  CAS  Google Scholar 

  13. I.-W. Chen, and X.-H. Wang, Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature 404, 168 (2000).

    Article  CAS  Google Scholar 

  14. H.T. Kim, and Y.H. Han, Sintering of nanocrystalline BaTiO3. Ceram. Int. 30, 1719 (2004).

    Article  CAS  Google Scholar 

  15. G.H. Haertling, Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc. 82, 797 (1999).

    Article  CAS  Google Scholar 

  16. J.A. Dawson, D.C. Sinclair, J.H. Harding, and C.L. Freeman, A-site strain and displacement in Ba1–xCaxTiO3 and Ba1–xSrxTiO3 and the consequences for the curie temperature. Chem. Mater. 26, 6104 (2014).

    Article  CAS  Google Scholar 

  17. S. Balmuchu, and P. Dobbidi, Temperature-dependent broadband Dielectric and Ferroelectric Properties of Ba(1-x)SrxTiO3 Ceramics for Energy Storage Capacitor Applications. J. Mater. Sci. Mater. Electron. 32, 9623 (2021).

    Article  CAS  Google Scholar 

  18. V. Annapu Reddy, N.P. Pathak, and R. Nath, Particle size dependent magnetic properties and phase transitions in multiferroic BiFeO3 nano-particles. J. Alloys Compd. 543, 206 (2012).

    Article  CAS  Google Scholar 

  19. A.R. Jayakrishnan, P.V.K. Yadav, J.P.B. Silva, and K.C. Sekhar, Microstructure tailoring for enhancing the energy storage performance of 0.98[0.6Ba(Zr0.2Ti0.8)O3-0.4(Ba0.7Ca0.3)TiO3]-0.02BiZn1/2Ti1/2O3 ceramic capacitors. J. Sci.: Adv. Mater. Devices 5, 119–124 (2019). https://doi.org/10.1016/j.jsamd.2019.12.001.

    Article  Google Scholar 

  20. M.K. Shamim, S. Sharma, A. Singh, R. Rai, and R. Rani, Study of the structural and electrical behavior of Bi(Mg, Ti)O3 modified (Ba, Ca)TiO3 ceramics. J. Adv. Dielectr. 06, 1650035 (2016).

    Article  CAS  Google Scholar 

  21. A. Dixit, S.B. Majumder, P.S. Dobal, R.S. Katiyar, and A.S. Bhalla, Phase transition studies of sol-gel deposited barium zirconate titanate thin films. Thin Solid Films 447–448, 284 (2004).

    Article  Google Scholar 

  22. V.P. Pavlovic, M.V. Nikolic, V.B. Pavlovic, J. Blanusa, S. Stevanovic, V.V. Mitic, M. Scepanovic, and B. Vlahovic, Raman responses in mechanically activated BaTiO3. J. Am. Ceram. Soc. 97, 601 (2014).

    Article  CAS  Google Scholar 

  23. Z. Yao, H. Liu, Y. Liu, Z. Wu, Z. Shen, Y. Liu, and M. Cao, Structure and dielectric behavior of Nd-doped BaTiO3 perovskites. Mater. Chem. Phys. 109, 475 (2008).

    Article  CAS  Google Scholar 

  24. P.R. Bueno, R. Tararan, R. Parra, E. Joanni, M.A. Ramirez, W.C. Ribeiro, E. Longo, and J. Varela, A polaronic stacking fault defect model for CaCu3Ti4O12 material: an approach for the origin of the huge dielectric constant and semiconducting coexistent features. J. Phys. D Appl. Phys. 42, 055404 (2009).

    Article  Google Scholar 

  25. L. Nedelcu, A. Ioachim, M. Toacsan, M.G. Banciu, I. Pasuk, C. Berbecaru, and H.V. Alexandru, Synthesis and dielectric characterization of Ba0.6Sr0.4TiO3 ferroelectric ceramics. Thin Solid Films 519, 5811–5815 (2011). https://doi.org/10.1016/j.tsf.2010.12.191.

    Article  CAS  Google Scholar 

  26. Z. Zhao, V. Buscaglia, M. Viviani, M.T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, and P. Nanni, Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics. Phys. Rev. B 70, 24107 (2004).

    Article  Google Scholar 

  27. X.-H. Wang, I.-W. Chen, X.-Y. Deng, Y.-D. Wang, and L.-T. Li, New progress in development of ferroelectric and piezoelectric nanoceramics. J. Adv. Ceram. 4, 1 (2015).

    Article  Google Scholar 

  28. L. Wu, Z. Cai, C. Zhu, P. Feng, L. Li, and X. Wang, Significantly enhanced dielectric breakdown strength of ferroelectric energy-storage ceramics via grain size uniformity control: phase-field simulation and experimental realization. Appl. Phys. Lett. 117, 212902 (2020).

    Article  CAS  Google Scholar 

  29. D. Damjanovic, Piezoelectric response and free-energy instability in the perovskite crystals BaTiO3, PbTiO3, and Pb(Zr, Ti)O3. Phys. Rev. B 73, 174106 (2006).

    Article  Google Scholar 

  30. Y. Yang and W. Lu, Nanoscale resistive switching devices: mechanisms and modeling. Nanoscale 5, 10076 (2013).

    Article  CAS  Google Scholar 

  31. R. Waser, R. Dittmann, G. Staikov, and K. Szot, Redox-based resistive switching memories – nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632 (2009).

    Article  CAS  Google Scholar 

  32. C. Singh, V.N. Thakur, and A. Kumar, Polarization controlled resistive switching in bulk ferroelectric ceramics: a universal phenomenon. J. Alloys Compd. 887, 161345 (2021).

    Article  CAS  Google Scholar 

  33. Y. Yang, P. Sheridan, and W. Lu, Complementary resistive switching in tantalum oxide-based resistive memory devices. Appl. Phys. Lett. 100, 203112 (2012).

    Article  Google Scholar 

Download references

Acknowledgments

The author, KC, acknowledges the financial support provided by NIT Tiruchirappalli, and the Ministry of Human Resources and Development (MHRD), India. AV would like to acknowledge the support from the Department of Science and Technology (DST), Government of India under the INSPIRE Faculty scheme (Grant No. DST/INSPIRE/04/2016/001295), and Science and Engineering Research Board (SERB), Government of India under Start-up Research Grant (Grant No. SERB/F/7249/2019-2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Annapureddy.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaushiga, C., Kaarthik, J., Sradha, G. et al. Influence of Sintering Temperature Strategy on Structural, Dielectric, and Resistive Switching in Bulk Ba0.7Sr0.3TiO3 Ceramics. J. Electron. Mater. 52, 1691–1699 (2023). https://doi.org/10.1007/s11664-022-10119-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10119-6

Keywords

Navigation