Skip to main content
Log in

Synthesis of LiV3O8 by an Ultrasound-Assisted Rheological Phase Reaction Method for Aqueous Supercapacitor Application

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Phase pure lithium trivanadate (LiV3O8) was synthesized by an ultrasound-assisted rheological phase reaction method for aqueous supercapacitor applications. The precursor was exposed to ultrasound for different time periods of 2, 6 and 10 h and then calcined under similar conditions. The effects of ultrasound on the structural features of the synthesized samples was characterized by XRD, and FTIR spectroscopy and the morphological features by SEM analysis. The sample synthesized by exposing the precursor to ultrasound for 10 h showed a high value of d100spacing, which facilitated the lithium (Li+) ion movement. Also, the formation of rod-like structures by the exposure of ultrasound facilitated the fast Li+ ion movement and enhanced the electrochemical performance. The electrochemical performance was measured using a three-electrode cell setup in the potential range of −0.8 to 0.2 V using 1 M LiNO3aqueous electrolyte. The specific capacitance of the material was found to be 120 F/g at a current density of 1A/g for the sample sonicated for 10 h (10S-LVO). The symmetric supercapacitor constructed using 10S-LVO showed the highest specific capacitance of 317F/g at 0.5 A/g, with 66.28% capacitance retention at 1A/g after 150 cycles.

Graphical Abstract

Effect of ultrasound on the morphology of LiV3O8

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G. Zhou, F. Li, and H.M. Cheng, Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 7(4), 1307–1338 (2014). https://doi.org/10.1039/c3ee43182g.

    Article  CAS  Google Scholar 

  2. S. Chen, L. Ma, K. Zhang, M. Kamruzzaman, C. Zhi, and J.A. Zapien, A flexible solid-state zinc ion hybrid supercapacitor based on Co-polymer derived hollow carbon spheres. J. Mater. Chem. A 7(13), 7784–7790 (2019). https://doi.org/10.1039/C9TA00733D.

    Article  CAS  Google Scholar 

  3. W. Zhang, Y. Liu, C. Chen, Z. Li, Y. Huang, and X. Hu, Flexible and binder-free electrodes of Sb/RGO and Na3V2(PO4)3/RGO nanocomposites for sodium-ion batteries. Small 11(31), 3822–3829 (2015). https://doi.org/10.1002/smll.201500783.

    Article  CAS  Google Scholar 

  4. W.J. Song, S. Lee, G. Song, H.B. Son, D.Y. Han, I. Jeong, Y. Bang, and S. Park, Recent progress in aqueous based flexible energy storage devices. Energy Storage Mater. 30, 260–286 (2020). https://doi.org/10.1016/j.ensm.2020.05.006.

    Article  Google Scholar 

  5. J. Yan, Q. Wang, T. Wei, and Z. Fan, Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. (2014). https://doi.org/10.1002/aenm.201300816.

    Article  Google Scholar 

  6. P. Bhojane, Recent advances and fundamentals of pseudocapacitors: materials, mechanism, and its understanding. J. Energy Storage 45, 103654 (2022). https://doi.org/10.1016/j.est.2021.103654.

    Article  Google Scholar 

  7. A.D. Wadsley, Crystal chemistry of non-stoichiometric pentavalent vandadium oxides: crystal structure of Li1+xV3O8. Acta Crystallogr. (1957). https://doi.org/10.1107/S0365110X57000821.

    Article  Google Scholar 

  8. J. Zheng, Y. Zhang, N. Wang, Y. Zhao, F. Tian, and C. Meng, Facile synthesis and characterization of LiV3O8 with sheet-like morphology for high-performance supercapacitors. Mater. Lett. 171, 240–243 (2016). https://doi.org/10.1016/j.matlet.2016.02.095.

    Article  CAS  Google Scholar 

  9. J. Liu, W. Liu, Y. Wan, S. Ji, J. Wang, and Y. Zhou, Facile synthesis of layered LiV3O8 hollow nanospheres as superior cathode materials for high-rate Li-Ion batteries. RSC Adv. 2(28), 10470–10474 (2012). https://doi.org/10.1039/c2ra20969a.

    Article  CAS  Google Scholar 

  10. J. Liu, L. Yi, L. Liu, and P. Peng, LiV3O8 nanowires with excellent stability for aqueous rechargeable lithium batteries. Mater. Chem. Phys. 161, 211–218 (2015). https://doi.org/10.1016/j.matchemphys.2015.05.038.

    Article  CAS  Google Scholar 

  11. W. Li, L. Zhu, Z. Yu, L. Xie, and X. Cao, Enhanced electrochemical performances as cathode materials for rechargeable lithium batteries. Materials (2017). https://doi.org/10.3390/ma10040344.

    Article  Google Scholar 

  12. Y.C. Si, L.F. Jiao, H.T. Yuan, H.X. Li, and Y.M. Wang, Structural and electrochemical properties of LiV3O8 prepared by combustion synthesis. J. Alloys Compd. 486(1–2), 400–405 (2009). https://doi.org/10.1016/j.jallcom.2009.06.188.

    Article  CAS  Google Scholar 

  13. S. Huang, Y. Lu, T.Q. Wang, C.D. Gu, X.L. Wang, and J.P. Tu, Polyacrylamide-assisted freeze drying synthesis of hierarchical plate-arrayed LiV3O8 for high-rate lithium-ion batteries. J. Power Sources 235, 256–264 (2013). https://doi.org/10.1016/j.jpowsour.2013.02.031.

    Article  CAS  Google Scholar 

  14. H. Song, Y. Liu, C. Zhang, C. Liu, and G. Cao, Ion batteries. J. Mater. Chem. A Mater. Energy Sustain. (2015). https://doi.org/10.1039/C4TA05616G.

    Article  Google Scholar 

  15. M. Arinawati, A.P. Hutama, C.S. Yudha, M. Rahmawati, and A. Purwanto, Facile rheological route method for LiFePO4/C cathode material production. Open Eng. 11(1), 669–676 (2021). https://doi.org/10.1515/eng-2021-0068.

    Article  CAS  Google Scholar 

  16. C. Ai, M. Yin, C. Wang, and J. Sun, Synthesis and characterization of spinel type ZnCo2O4 as a novel. J. Mater. Sci. 39, 1077–1079 (2004).

    Article  CAS  Google Scholar 

  17. Y. Liang, S. Yang, Z. Yi, M. Li, J. Sun, and Y. Zhou, Rheological phase synthesis and electrochemical performances of LiVMoO6 as a high-capacity anode material for lithium ion batteries. J. Mater. Sci. 40(20), 5553–5555 (2005). https://doi.org/10.1007/s10853-005-4549-0.

    Article  CAS  Google Scholar 

  18. H. Liu, S.H. Luo, D.X. Zhang, D.B. Hu, T.F. Yi, Z.Y. Wang, Y.H. Zhang, Y.G. Liu, Q. Wang, A.M. Hao et al., A simple and low-cost method to synthesize Cr-doped α-Fe2O3 electrode materials for lithium-ion batteries. ChemElectroChem 6(3), 856–864 (2019). https://doi.org/10.1002/celc.201801736.

    Article  CAS  Google Scholar 

  19. H. Liu, L. Liu, and C. Ding, A quick microwave-assisted rheological phase reaction route for preparing Cu3Mo2O9 with excellent lithium storage and supercapacitor performance. J. Alloys Compd. 867, 159061 (2021). https://doi.org/10.1016/j.jallcom.2021.159061.

    Article  CAS  Google Scholar 

  20. S. Zhong, W. Chen, L. Wu, and J. Liu, A PEG-assisted rheological phase reaction synthesis of 5LiFePO4{dot Operator}Li3V2(PO4) 3/C as cathode material for lithium ion cells. Ionics (Kiel) 18(5), 523–527 (2012). https://doi.org/10.1007/s11581-012-0701-4.

    Article  CAS  Google Scholar 

  21. J.J. Hinman, and K.S. Suslick, Nanostructured materials synthesis using ultrasound. Top. Curr. Chem. 375(1), 1–36 (2017). https://doi.org/10.1007/s41061-016-0100-9.

    Article  CAS  Google Scholar 

  22. Z. Li, J. Dong, L. Wang, Y. Zhang, T. Zhuang, H. Wang, X. Cui, and Z. Wang, A power-triggered preparation strategy of nano-structured inorganics: sonosynthesis. Nanoscale Adv. 3(9), 2423–2447 (2021). https://doi.org/10.1039/d1na00038a.

    Article  CAS  Google Scholar 

  23. H.J. Kim, J.M. Kim, W.S. Kim, H.J. Koo, D.S. Bae, and H.S. Kim, Synthesis of LiFePO4/C cathode materials through an ultrasonic-assisted rheological phase method. J. Alloys Compd. 509(18), 5662–5666 (2011). https://doi.org/10.1016/j.jallcom.2011.02.113.

    Article  CAS  Google Scholar 

  24. N. Dharmalingam, S. Rajagopal, P. Veluswamy, S. Paulraj, and V. Kathirvel, Facile microwave synthesis of Sn-doped WO3 for pseudocapacitor applications. J. Mater. Sci. Mater. Electron. 33(12), 9246–9255 (2022). https://doi.org/10.1007/s10854-021-07249-8.

    Article  CAS  Google Scholar 

  25. R. Rajavaram, K. Sivaiah, and S. Buddhudu, Structural and dielectric properties of LiV3O8 ceramic powders structural and dielectric properties of LiV3O8 ceramic powders. Ferroelectrics (2012). https://doi.org/10.1080/00150193.2012.707843.

    Article  Google Scholar 

  26. D. Wang, L. Cao, J. Huang, and J. Wu, Synthesis and electrochemical properties of LiV3O8 via an improved sol-gel process. Ceram. Int. 38(4), 2647–2652 (2012). https://doi.org/10.1016/j.ceramint.2011.11.030.

    Article  CAS  Google Scholar 

  27. L. Liu, L. Jiao, Y. Zhang, J. Sun, L. Yang, Y. Miao, H. Yuan, and Y. Wang, Synthesis of LiV3O8 by an improved citric acid assisted sol-gel method at low temperature. Mater. Chem. Phys. 111, 565–569 (2008). https://doi.org/10.1016/j.matchemphys.2008.05.013.

    Article  CAS  Google Scholar 

  28. T. Partheeban, and M. Sasidharan, Materials template-free synthesis of LiV3O8 hollow microspheres as positive electrode for Li-Ion batteries. J. Mater. Sci. (2019). https://doi.org/10.1007/s10853-019-04086-3.

    Article  Google Scholar 

  29. A.M. Teli, S.A. Beknalkar, S.A. Pawar, and D.P. Dubal, Effect of concentration on the charge storage kinetics of nanostructured MnO2 thin-film supercapacitors synthesized by the hydrothermal method. Energies 13(22), 6124 (2020).

    Article  CAS  Google Scholar 

  30. A. Cymann-Sachajdak, M. Graczyk-Zajac, G. Trykowski, and M. Wilamowska-Zawłocka, Understanding the capacitance of thin composite films based on conducting polymer and carbon nanostructures in aqueous electrolytes. Electrochim. Acta 383, 138356 (2021). https://doi.org/10.1016/j.electacta.2021.138356.

    Article  CAS  Google Scholar 

  31. Z.H. Huang, T.Y. Liu, Y. Song, Y. Li, and X.X. Liu, Balancing the electrical double layer capacitance and pseudocapacitance of hetero-atom doped carbon. Nanoscale 9(35), 13119–13127 (2017). https://doi.org/10.1039/c7nr04234e.

    Article  CAS  Google Scholar 

  32. Y. Chang, H. Shi, X. Yan, G. Zhang, and L. Chen, A ternary B, N, P-doped carbon material with suppressed water splitting activity for high-energy aqueous supercapacitors. Carbon N. Y. 170, 127–136 (2020). https://doi.org/10.1016/j.carbon.2020.08.013.

    Article  CAS  Google Scholar 

  33. S. Pavithra, S.P. Keerthana, R. Yuvakumar, P.S. Kumar, S. Rajesh, and A. Sakunthala, Preparation of β-FeOOH by ultrasound assisted precipitation route for aqueous supercapacitor applications. Inorg. Nano-Metal Chem. (2021). https://doi.org/10.1080/24701556.2021.1988978.

    Article  Google Scholar 

  34. A. Sakunthala, M.V. Reddy, S. Selvasekarapandian, B.V.R. Chowdari, H. Nithya, and P.C. Selvin, Synthesis and electrochemical studies on LiV3O8. J. Solid State Electrochem. 14(10), 1847–1854 (2010). https://doi.org/10.1007/s10008-010-1044-6.

    Article  CAS  Google Scholar 

  35. Y.J. Hao, Q.Y. Lai, L. Wang, X.Y. Xu, and H.Y. Chu, Electrochemical performance of a high cation-deficiency Li2Mn4O9/active carbon supercapacitor in LiNO3 electrolyte. Synth. Met. 160(7–8), 669–674 (2010). https://doi.org/10.1016/j.synthmet.2009.12.025.

    Article  CAS  Google Scholar 

  36. C. Chang, J.Y. Kim, and P.N. Kumta, Influence of crystallite size on the electrochemical property of chemically synthesized LiNiO2 influence of crystallite size on the electrochemical properties of chemically synthesized stoichiometric LiNiO2. J. Electrochem. Soc. (2002). https://doi.org/10.1149/1.1495495.

    Article  Google Scholar 

  37. L. Xie, Y. Xu, J. Zhang, C. Zhang, X. Cao, and L. Qu, Rheological phase synthesis of Er-doped LiV3O8 as electroactive material for a cathode of secondary lithium storage. Electron. Mater. Lett. 9(4), 549–553 (2013). https://doi.org/10.1007/s13391-013-2189-0.

    Article  CAS  Google Scholar 

  38. Y. Zhang, J. Zheng, Y. Zhao, T. Hu, Z. Gao, and C. Meng, Fabrication of V2O5 with various morphologies for high-performance electrochemical capacitor. Appl. Surf. Sci. 377, 385–393 (2016). https://doi.org/10.1016/j.apsusc.2016.03.180.

    Article  CAS  Google Scholar 

  39. J. Jiang, J. Liu, S. Peng, D. Qian, D. Luo, Q. Wang, Z. Tian, and Y. Liu, Facile synthesis of α-MoO3 nanobelts and their pseudocapacitive behavior in an aqueous Li2SO4 solution. J. Mater. Chem. A 1(7), 2588–2594 (2013). https://doi.org/10.1039/c2ta01120d.

    Article  CAS  Google Scholar 

  40. S. Alagar, R. Madhuvilakku, R. Mariappan, and S. Piraman, Nano-architectured porous Mn2O3 spheres/cubes versus RGO for asymmetric supercapacitors applications in novel solid-state electrolyte. J. Power Sources (2019). https://doi.org/10.1016/j.jpowsour.2019.227181.

    Article  Google Scholar 

  41. Z. Yin, J. Xu, Y. Ge, Q. Jiang, Y. Zhang, Y. Yang, Y. Sun, S. Hou, Y. Shang, and Y. Zhang, Synthesis of V2O5 microspheres by spray pyrolysis as cathode material for supercapacitors. Mater. Res. Express 5(3), 36306 (2018). https://doi.org/10.1088/2053-1591/aab424.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the following funding agencies for the instrument facilities. The authors are grateful to the Department of Atomic Energy, Board of Research in Nuclear Sciences (DAE-BRNS Project No.: 1221/34/32/2012).The authors thank the Department of Science and Technology, Science and Engineering Research Board, DST-SERB Project No. EMR/2017/003227dated 16 July 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sakunthala.

Ethics declarations

The authors declare that they have no conflicts of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavithra, S., Kathirvel, V., Rajesh, S. et al. Synthesis of LiV3O8 by an Ultrasound-Assisted Rheological Phase Reaction Method for Aqueous Supercapacitor Application. J. Electron. Mater. 52, 1794–1807 (2023). https://doi.org/10.1007/s11664-022-10108-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10108-9

Keywords

Navigation