Skip to main content
Log in

Actively Tunable and Polarization-Independent Toroidal Resonance in Hybrid Metal-Vanadium Dioxide Metamaterial

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A tunable toroidal resonance generated in hybrid metal-vanadium dioxide metamaterial, which is composed of rectangular aluminum split ring interconnected with VO2 strips, is proposed and illustrated in this paper. Simulation results show that the toroidal dipolar resonance is generated by two reversed closed-loop poloidal currents co-excited by aluminum and vanadium dioxide, and the toroidal dipolar resonance is insensitive to the polarization angle because of symmetrical structure. In addition, the calculated scattered powers show that the toroidal dipolar resonance is remarkable and plays a dominant role in the vicinity of transmission dip. Moreover, the amplitude of toroidal resonance can be actively tuned by conductivity of VO2, and theoretical fitting is carried out to further reveal the physical mechanism. The fitting results indicate that the physical mechanism can be attributed to the variation of overall damping rate caused by tuning conductivity of vanadium dioxide. This work can enrich the actively tunable toroidal dipolar metamaterial and have potential applications in terahertz high–Q-factor sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. I.B. Zeldovich, Electromagnetic interaction with parity violation. Sov. Phys. JETP. 6, 1184 (1958).

    CAS  Google Scholar 

  2. V.M. Dubovik, and V.V. Tugushev, Toroid moments in electrodynamics and solid-state. Phys. Rep. 187, 145 (1990).

    Article  Google Scholar 

  3. M.H. Li, L.Y. Guo, J.F. Dong, and H.L. Yang, Resonant transparency in planar metamaterial with toroidal moment. Appl. Phys. Express 7, 082201 (2014).

    Article  CAS  Google Scholar 

  4. E. Ponizovskaya Devine, Mid-infrared photodetector based on 2D material metamaterial with negative index properties for a wide range of angles near vertical illumination. Appl. Phys. A 127, 209 (2021).

    Article  CAS  Google Scholar 

  5. S. Indrajeet, H. Wang, M.D. Hutchings, B.G. Taketani, F.K. Wilhelm, M.D. LaHaye, and B.L.T. Plourde, Coupling a superconducting qubit to a left-handed metamaterial resonator. Phys. Rev. Appl. 14, 064033 (2020).

    Article  CAS  Google Scholar 

  6. M. Bakır, M. Karaaslan, F. Dincer, K. Delihacıoglu, and C. Sabah, Tunable perfect metamaterial absorber and sensor applications. J Mater Sci: Mater Electron 27, 12091 (2016).

    Google Scholar 

  7. J.S. Hummelt, X. Lu, H. Xu, I. Mastovsky, M.A. Shapiro, and R.J. Temkin, Coherent Cherenkov-cyclotron radiation excited by an electron beam in a metamaterial waveguide. Phys. Rev. Lett. 117, 237701 (2016).

    Article  CAS  Google Scholar 

  8. D. Ziemkiewicz and S. Zielińska-Raczyńska, Complex Doppler effect in left-handed metamaterials. J. Opt. Soc. Am. B 32, 363 (2015).

    Article  CAS  Google Scholar 

  9. J.S. Mei, Q. Wu, and K. Zhang, Multifunctional complementary cloak with homogeneous anisotropic material parameters. J. Opt. Soc. Am. A 29, 2067 (2012).

    Article  Google Scholar 

  10. W.C. Harris, D.D. Stancil, and D.S. Ricketts, Improved wireless power transfer efficiency with non-perfect lenses. Appl. Phys. Lett. 114, 143903 (2019).

    Article  Google Scholar 

  11. J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, Optical polarization encoding using graphene-loaded plasmonic metasurfaces. Adv. Opt. Mater. 4, 91 (2016).

    Article  CAS  Google Scholar 

  12. T. Kaelberer, V.A. Fedotov, N. Papasimakis, D.P. Tsai, and N.I. Zheludev, Toroidal dipolar response in a metamaterial. Science 330, 1510 (2010).

    Article  CAS  Google Scholar 

  13. S. Xu, A. Sayanskiy, A.S. Kupriianov, V.R. Tuz, P. Kapitanova, and H.B. Sun, Experimental observation of toroidal dipole modes in all-dielectric metasurfaces. Adv. Opt. Mater. 64, 1801166 (2018).

    Google Scholar 

  14. Z. Liu, S. Du, A. Cui, Z.C. Li, Y.C. Fan, and S.Q. Chen, High-quality-factor mid-infrared toroidal excitation in folded 3D metamaterials. Adv. Mater. 29, 1606298 (2017).

    Article  Google Scholar 

  15. J. Li, J. Shao, X. Li, Z. Shi, and Y.J. Wang, Incident-angle-insensitive toroidal metamaterial. Opt. Express 30, 8510 (2022).

    Article  CAS  Google Scholar 

  16. C. Chen, K. Kaj, Y. Huang, X. Zhao, R.D. Averitt, and X. Zhang, Tunable toroidal response in a reconfigurable terahertz metamaterial. Adv. Opt. Mater. 9, 2101215 (2021).

    Article  CAS  Google Scholar 

  17. T. Lei, T.Y. Xiang, J. Wang, R.S. Zhou, and X.W. Zhu, Dual-toroidal analog EIT with metamaterial. Appl. Phys. Express 14, 067001 (2021).

    Article  CAS  Google Scholar 

  18. T. Guo, C. Chen, F. Yan, R. Wang, and L. Li, Controllable terahertz switch using toroidal dipolar mode of a metamaterial. Plasmonics 16, 933 (2021).

    Article  Google Scholar 

  19. T. Xiang, T. Lei, T. Chen, Z. Shen, and J. Zhang, Low-loss dual-band transparency metamaterial with toroidal dipole. Materials 15, 5013 (2022).

    Article  CAS  Google Scholar 

  20. B. Gerislioglu, A. Ahmadivand, and N. Pala, Tunable plasmonic toroidal terahertz metamodulator. Phys. Rev. B 97, 161405 (2018).

    Article  CAS  Google Scholar 

  21. M. Gupta, Y.K. Srivastava, and R. Singh, A toroidal metamaterial switch. Adv. Mater. 30, 1704845 (2018).

    Article  Google Scholar 

  22. X. He, L. Tian, Y. Wang, J. Jiang, and Z. Geng, Active modulation and switching of toroidal resonance in micromachined reconfigurable terahertz metamaterials. Results Phys. 17, 103133 (2020).

    Article  Google Scholar 

  23. Y. Sun, D. Liao, J. Xu, Y. Wu, and L. Chen, Active switching of toroidal resonances by using a Dirac semimetal for terahertz communication. Front Phys. 8, 602772 (2020).

    Article  Google Scholar 

  24. X. Chen and W. Fan, Study of the interaction between graphene and planar terahertz metamaterial with toroidal dipolar resonance. Opt. Lett. 42, 2034 (2017).

    Article  CAS  Google Scholar 

  25. Z. Liu, S. Du, A. Cui, Z. Li, Y. Fan, S. Chen, W. Li, J. Li, and C. Gu, High-quality-factor mid-infrared toroidal excitation in folded 3D metamaterials. Adv. Mater. 29, 1606298 (2017).

    Article  Google Scholar 

  26. C.B. Zhou, S.Y. Li, M.H. Fan, X.F. Wang, Y.L. Xu, W.W. Xu, S.Y. Xiao, M.Z. Hu, and J.T. Liu, Optical radiation manipulation of Si-Ge2Sb2Te5 hybrid metasurfaces. Opt. Express 28, 9690 (2020).

    Article  Google Scholar 

  27. Z. Song, Y. Deng, Y. Zhou, and Z. Liu, Tunable toroidal dipolar resonance for terahertz wave enabled by a vanadium dioxide metamaterial. IEEE Photonics J. 11, 1 (2019).

    Google Scholar 

  28. Z. Song, Y. Deng, Y. Zhou, and Z. Liu, Terahertz toroidal metamaterial with tunable properties. Opt. Express 27, 5792 (2019).

    Article  CAS  Google Scholar 

  29. S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials. Carbon 126, 271 (2018).

    Article  CAS  Google Scholar 

  30. J. Huang, J. Li, Y. Yang, J. Li, J.H. Li, Y.T. Zhang, and J.Q. Yao, Broadband terahertz absorber with a flexible, reconfigurable performance-based hybrid-patterned vanadium dioxide metasurfaces. Opt. Express 28, 17832 (2020).

    Article  Google Scholar 

  31. S. Malthesh and N. Krishnaswamy, Improvement in quality factor of double microring resonator for sensing applications. J. Nanophotonics 13, 026014 (2019).

    Article  CAS  Google Scholar 

  32. G. Sun, S. Peng, X. Zhang, and Y. Zhu, Switchable electromagnetically induced transparency with toroidal mode in a graphene-loaded all-dielectric Metasurface. Nanomaterials 10, 1064 (2020).

    Article  CAS  Google Scholar 

  33. G.D. Liu, X. Zhai, S.X. Xia, Q. Lin, C.J. Zhao, and L.L. Wang, Toroidal resonance based optical modulator employing hybrid graphene-dielectric metasurface. Opt. Express 25, 26045 (2017).

    Article  CAS  Google Scholar 

  34. H.T. Chen, H. Yang, R. Singh, J.F. O’Hara, A.K. Azad, S.A. Trugman, Q.X. Jia, and A.J. Taylor, Tuning the resonance in high-temperature superconducting terahertz metamaterials. Phys. Rev. Lett. 105, 247402 (2010).

    Article  Google Scholar 

  35. W.D. Wang, and J.G. Qi, Polarization-independent Fano metasurface with directional toroidal dipole for magnetic field tunability. Appl. Phys. Express 12, 065004 (2019).

    Article  CAS  Google Scholar 

  36. A. Bhattacharya, K.M. Devi, T. Nguyen, and G. Kumar, Actively tunable toroidal excitations in graphene based terahertz metamaterials. Opt. Commun. 459, 124919 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the Natural Science Foundation of Heilongjiang Province (LH2022F040) and Harbin University Doctor Found (HUDF2020108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Shu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, C., Zhang, C., Ye, Y. et al. Actively Tunable and Polarization-Independent Toroidal Resonance in Hybrid Metal-Vanadium Dioxide Metamaterial. J. Electron. Mater. 52, 691–696 (2023). https://doi.org/10.1007/s11664-022-10039-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10039-5

Keywords

Navigation