Skip to main content

Advertisement

Log in

Single-Site Mn2+-Activated and Sr-Alloyed Ca3(PO4)2 Red Phosphors and Their Lighting Applications

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The phosphor-converted white light-emitting diode (WLED) has received tremendous attention as a promising alternative to traditional light sources in lighting and displays. Herein, a novel broadband red emitter Ca2Sr(PO4)2:Mn2+ was successfully designed and synthesized based on the Sr-alloying and Mn-doping of Ca3(PO4)2. The phase purity of the materials was verified by x-ray diffraction (XRD) analyses, while a scanning electron microscope (SEM) coupled with an energy-dispersive spectrometer (EDS) was employed to confirm the uniform dopant distribution. XRD Rietveld refinements were further performed to clarify the site occupation of alloying Sr and the Mn dopants. Effective site engineering confined the Mn dopants in a highly symmetric Ca5 site and excluded the immersion of Sr, leading to an extraordinarily long fluorescence lifetime. Density functional theory (DFT) simulations also revealed the good potential of the materials as host matrices for activators such as Mn2+. Finally, Ca2Sr(PO4)2:Mn2+ was used to fabricate a WLED prototype based on a near-ultraviolet (n-UV) commercial LED chip, which realized a warm white-light emission and high color rendering index (Ra) of 82.9. This WLED was able to survive the long-term stability test while maintaining high luminous efficacy of ~ 60 lm/W within 20 h, showing its great potential in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G. Bai, M.K. Tsang, and J. Hao, Tuning the luminescence of phosphors: beyond conventional chemical method. Adv. Opt. Mater. 3, 431–462 (2015).

    Article  CAS  Google Scholar 

  2. Z. Xia and A. Meijerink, Ce3+-Doped garnet phosphors: composition modification, luminescence properties and applications. Chem. Soc. Rev. 46, 275–299 (2017).

    Article  CAS  Google Scholar 

  3. Z. Xia and Q. Liu, Progress in discovery and structural design of color conversion phosphors for LEDs. Prog. Mater. Sci. 84, 59–117 (2016).

    Article  CAS  Google Scholar 

  4. G. Bai, M.K. Tsang, and J. Hao, Luminescent ions in advanced composite materials for multifunctional applications. Adv. Func. Mater. 26, 6330–6350 (2016).

    Article  CAS  Google Scholar 

  5. Z.-L. Wang, H.-L. Li, and J.-H. Hao, Blue–green, red, and white light emission of ZnWO4-based phosphors for low-voltage cathodoluminescence applications. J. Electrochem. Soc. 155, J152 (2008).

    Article  CAS  Google Scholar 

  6. Wong, M. C.; Chen, L.; Bai, G.; Huang, L. B.; Hao, J., Temporal and remote tuning of piezophotonic-effect-induced luminescence and color gamut via modulating magnetic field. Advanced Materials 2017, 29 (43).

  7. J. Zhao, J. Dong, X. Ye, and L. Wang, A promising novel red-emitting Eu3+-activated neodymium calcium phosphate phosphor with good thermal stability and excellent color purity for WLEDs. J. Mol. Struct. 1240, 130567 (2021).

    Article  CAS  Google Scholar 

  8. T. Sakthivel, G. Annadurai, R. Vijayakumar, and X. Huang, Synthesis, luminescence properties and thermal stability of Eu3+-activated Na2Y2B2O7 red phosphors excited by near-UV light for pc-WLEDs. J. Lumin. 205, 129–135 (2019).

    Article  CAS  Google Scholar 

  9. J. Hao and M. Cocivera, luminescent characteristics of blue-emitting Sr2B5O9Cl: Eu thin-film phosphors. Appl. Phys. Lett. 79, 740–742 (2001).

    Article  CAS  Google Scholar 

  10. M. Li, Y. Zhao, S. Zhang, R. Yang, W. Qiu, P. Wang, M.S. Molokeev, and S. Ye, Understanding the energy barriers of the reversible ion exchange process in CsPbBr1.5Cl1.5@Y2O3:Eu3+ macroporous composites and their application in anti-counterfeiting codes. ACS Appl. Mate. Interfaces 13, 60362–60372 (2021).

    Article  CAS  Google Scholar 

  11. Z. Yang, G. Liu, Y. Zhao, Y. Zhou, J. Qiao, M.S. Molokeev, H.C. Swart, and Z. Xia, Competitive site occupation toward improved quantum efficiency of SrLaScO4: Eu red phosphors for warm white LEDs. Adv. Opt. Mater. 10, 2102373 (2022).

    Article  CAS  Google Scholar 

  12. R. Shrivastava and J. Kaur, Studies on long lasting optical properties of Eu2+ and Dy3+ doped di-barium magnesium silicate phosphors. Chin. Chem. Lett. 26, 1187–1190 (2015).

    Article  CAS  Google Scholar 

  13. H. Ming, S. Liu, L. Liu, J. Peng, J. Fu, F. Du, and X. Ye, Highly regular, uniform K3ScF6:Mn4+ phosphors: facile synthesis, microstructures, photoluminescence properties, and application in light-emitting diode devices. ACS Appl. Mater. Interfaces. 10, 19783–19795 (2018).

    Article  CAS  Google Scholar 

  14. S. Zhang, Y. Zhao, Y. Zhou, M. Li, W. Wang, H. Ming, X. Jing, and S. Ye, Dipole-orientation-dependent Förster resonance energy transfer from aromatic head groups to MnBr42– blocks in organic-inorganic hybrids. J. Phys. Chem. Lett. 12, 8692–8698 (2021).

    Article  CAS  Google Scholar 

  15. S. Zhang, H. Wei, Y. Zhou, X. Wang, L. Xu, and H. Jiao, Green synthesis of K2TiF6:Mn4+ using KHF2 as accessory ingredient: a novel airtight solid-state strategy. Opt. Mater. 86, 165–171 (2018).

    Article  CAS  Google Scholar 

  16. Q. Zhou, L. Dolgov, A.M. Srivastava, L. Zhou, Z. Wang, J. Shi, M.D. Dramićanin, M.G. Brik, and M. Wu, Mn2+ and Mn4+ red phosphors: synthesis, luminescence and applications in WLEDs. A review. J. Mater. Chem. C 6, 2652–2671 (2018).

    Article  CAS  Google Scholar 

  17. Y. Wu, Y. Lv, K. Ruan, and Z. Xie, A far-red emission (Ca, Sr)14Zn6Ga10O35:Mn4+ phosphor for potential application in plant-growth LEDs. Dalton Trans. 47, 15574–15582 (2018).

    Article  CAS  Google Scholar 

  18. H. Ming, Y. Zhao, Y. Zhou, S. Zhang, Y. Wang, E. Song, Z. Xia, and Q. Zhang, A guanidinium-based Mn4+-doped red-emitting hybrid phosphor with high stability. ACS Appl. Electron. Mater. 2, 4134–4145 (2020).

    Article  CAS  Google Scholar 

  19. J. Jin, J. Lin, Y. Huang, L. Zhang, Y. Jiang, D. Tian, F. Lin, Y. Wang, and X. Chen, High sensitivity ratiometric fluorescence temperature sensing using the microencapsulation of CsPbBr3 and K2SiF6:Mn4+ phosphor. Chin. Chem. Lett. 33, 4798–4802 (2022).

    Article  CAS  Google Scholar 

  20. Y. Wang, Y. Zhou, H. Ming, Y. Zhao, E. Song, and Q. Zhang, Luminescence enhancement of Mn4+-activated fluorides via a heterovalent Co-doping strategy for monochromatic multiplexing. ACS Appl. Mater. Interfaces. 13, 51255–51265 (2021).

    Article  CAS  Google Scholar 

  21. X.-J. Wang, D. Jia, and W.M. Yen, Mn2+ Activated green, yellow, and red long persistent phosphors. J. Lumin. 102–103, 34–37 (2003).

    Article  Google Scholar 

  22. D.T. Palumbo and J.J. Brown, Electronic states of Mn2+-activated phosphors. J. Electrochem. Soc. 117, 1184 (1970).

    Article  CAS  Google Scholar 

  23. C.-H. Huang, P.-J. Wu, J.-F. Lee, and T.-M. Chen, (Ca, Mg, Sr)9Y(PO4)7:Eu2+, Mn2+: phosphors for white-light near-UV LEDs through crystal field tuning and energy transfer. J. Mater. Chem. 21, 10489–10495 (2011).

    Article  CAS  Google Scholar 

  24. C. Zhao, Z. Xia, and M. Li, Eu2+-activated full color orthophosphate phosphors for warm white light-emitting diodes. RSC Adv. 4, 33114–33119 (2014).

    Article  CAS  Google Scholar 

  25. L. Mao, P. Guo, S. Wang, A.K. Cheetham, and R. Seshadri, Design principles for enhancing photoluminescence quantum yield in hybrid manganese bromides. J. Am. Chem. Soc. 142, 13582–13589 (2020).

    Article  CAS  Google Scholar 

  26. Z. Wang, J. Yu, F. Tang, C. Zheng, L. Zhang, and K. Tian, Deep insight into the luminescence performance of Li2MgSiO4:Mn2+ green phosphor synthesized by a sol-gel process. J. Lumin. 242, 118563 (2022).

    Article  CAS  Google Scholar 

  27. N.F. Samsudin, K.A. Matori, Y.W. Fen, J.L.Y. Chyi, N.A.S. Omar, and Z.N. Alassan, Optical and structural properties of Zn2SiO4:Mn2+ from SLS waste bottle obtained by a solid state method. Procedia Chem. 19, 57–67 (2016).

    Article  CAS  Google Scholar 

  28. Li, F.; Zhao, G. Y.; Yang, Y.; Zhou, N.; Song, Y.; Zhang, S. X. In improved photoluminescence and vacuum ultraviolet irradiation stability of Zn2SiO4: Mn2+ with MgF2 Nano-Coating. In: Mater. Sci. Forum, Trans. Tech. Publ. pp 550-553 (2015)

  29. H. Pham and M.T. Tran, Excellent thermal stability and high quantum efficiency orange-red-emitting AlPO4:Eu3+ phosphors for WLED application. J. Alloy. Compd. 853, 156941 (2020).

    Google Scholar 

  30. B. Yu, Y. Li, R. Zhang, H. Li, and Y. Wang, A novel thermally stable eulytite-type NaBaBi2(PO4)3:Eu3+ red-emitting phosphor for pc-WLEDs. J. Alloy. Compd. 852, 157020 (2021).

    Article  CAS  Google Scholar 

  31. J. Zhang, H. Liang, and Q. Su, Luminescence of Ce3+-doped Sr10(PO4)6S phosphors. J. Phys. D Appl. Phys. 42, 105110 (2009).

    Article  Google Scholar 

  32. V.R. Bandi, J. Jeong, H.-J. Shin, K. Jang, H.-S. Lee, S.-S. Yi, and J.H. Jeong, Thermally stable blue-emitting NaSrPO4:Eu2+ phosphor for near UV white LEDs. Opt. Commun. 284, 4504–4507 (2011).

    Article  CAS  Google Scholar 

  33. F. Zhao, Z. Song, and Q. Liu, Color-tunable persistent luminescence of Ca10M(PO4)7:Eu2+ (M = Li, Na, and K) with a β-Ca3(PO4)2-type structure. Inorg. Chem. 60, 3952–3960 (2021).

    Article  CAS  Google Scholar 

  34. Z. Yang, Y. Zhao, Y. Zhou, J. Qiao, Y.-C. Chuang, M.S. Molokeev, and Z. Xia, Giant red-shifted emission in (Sr, Ba)Y2O4:Eu2+ phosphor toward broadband near-infrared luminescence. Adv. Func. Mater. 32, 2103927 (2022).

    Article  CAS  Google Scholar 

  35. F. Yao, L. Wang, Y. Lv, Y. Zhuang, T.-L. Zhou, and R.-J. Xie, Composition-dependent thermal degradation of red-emitting (Ca1−xSrx)AlSiN3: Eu2+ phosphors for high color rendering white LEDs. J. Mater. Chem. C 6, 890–898 (2018).

    Article  CAS  Google Scholar 

  36. Y. Zhou, H. Ming, S. Zhang, T. Deng, E. Song, and Q. Zhang, Unveiling Mn4+ substitution in oxyfluoride phosphor Rb2MoO2F4:Mn4+ applied to wide-gamut fast-response backlight displays. Chem. Eng. J. 415, 128974 (2021).

    Article  CAS  Google Scholar 

  37. Y.S. Zhao, H.L. Yang, J. Wang, J.S. Zhong, W.D. Xiang, and Y.J. Dong, Mn3+ ion Co-doped in Y3Al5O12Ce3+ phosphor to enhance the red spectral emission. Adv. Mater. Res. 284–286, 2259–2262 (2011).

    Article  Google Scholar 

  38. N. Guo, S. Li, J. Chen, J. Li, Y. Zhao, L. Wang, C. Jia, R. Ouyang, and W. Lü, Photoluminescence properties of whitlockite-type Ca9MgK(PO4)7:Eu2+, Mn2+ phosphor. J. Lumin. 179, 328–333 (2016).

    Article  CAS  Google Scholar 

  39. Q.Y. Wang, P. Yuan, T.W. Wang, Z.Q. Yin, and F.C. Lu, Effect of Sr and Ca substitution of Ba on the photoluminescence properties of the Eu2+ activated Ba2MgSi2O7 phosphor. Ceram. Int. 46, 1374–1382 (2020).

    Article  CAS  Google Scholar 

  40. M. Yashima, A. Sakai, T. Kamiyama, and A. Hoshikawa, Crystal structure analysis of β-tricalcium phosphate Ca3(PO4)2 by neutron powder diffraction. J. Solid State Chem. 175, 272–277 (2003).

    Article  CAS  Google Scholar 

  41. K. Matsunaga, T. Kubota, K. Toyoura, and A. Nakamura, First-principles calculations of divalent substitution of Ca2+ in tricalcium phosphates. Acta Biomater. 23, 329–337 (2015).

    Article  CAS  Google Scholar 

  42. J. Qiao, J. Zhao, and Z. Xia, A review on the Eu2+ doped β-Ca3(PO4)2-type phosphors and the sites occupancy for photoluminescence tuning. Opt. Mater.: X 1, 100019 (2019).

    CAS  Google Scholar 

  43. A. Altomare, R. Rizzi, M. Rossi, A. El Khouri, M. Elaatmani, V. Paterlini, G. Della Ventura, and F. Capitelli, New Ca2.90(Me2+)0.10(PO4)2 β tricalcium phosphates with Me2+ = Mn, Ni, Cu: synthesis crystal chemistry, and luminescence properties. Curr. Comput.-Aided Drug Des. 9, 288 (2019).

    CAS  Google Scholar 

  44. E. Boanini, M. Gazzano, C. Nervi, M.R. Chierotti, K. Rubini, R. Gobetto, and A. Bigi, Strontium and zinc substitution in β-tricalcium phosphate: An x-ray diffraction, solid state NMR and ATR-FTIR study. J. Funct. Biomater. 10, 20 (2019).

    Article  CAS  Google Scholar 

  45. S. Zhang, Y. Zhao, J. Zhou, H. Ming, C.-H. Wang, X. Jing, S. Ye, and Q. Zhang, Structural design enables highly-efficient green emission with preferable blue light excitation from zero-dimensional manganese (II) hybrids. Chem. Eng. J. 421, 129886 (2021).

    Article  CAS  Google Scholar 

  46. W.H. Baur, The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Crystallogr. Sect. B 30, 1195–1215 (1974).

    Article  CAS  Google Scholar 

  47. K. Robinson, G.V. Gibbs, and P.H. Ribbe, Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172, 567–570 (1971).

    Article  CAS  Google Scholar 

  48. K. Park, D.A. Hakeem, D.H. Kim, G.W. Jung, and S.W. Kim, Synthesis and photoluminescence properties of new garnet-type red-emitting Li7La3-xZr2O12:xEu3+ Phosphors. Scr. Mater. 179, 92–98 (2020).

    Article  CAS  Google Scholar 

  49. S.J. Yoon, J.W. Pi, and K. Park, Structural and photoluminescence properties of solution combustion-processed novel ZrO2 doped with Eu3+ and Al3+. Dyes Pigm. 150, 231–240 (2018).

    Article  CAS  Google Scholar 

  50. T.A. Safeera and E.I. Anila, An investigation on the luminescence quenching mechanism of ZnGa2O4:Tb3+ phosphor. J. Lumin. 205, 277–281 (2019).

    Article  CAS  Google Scholar 

  51. V.R. Prasad, S. Babu, and Y.C. Ratnakaram, Luminescence performance of Eu3+ doped lead free zinc phosphate glasses for red emission. AIP Conf. Proc. 1728, 020394 (2016).

    Article  Google Scholar 

  52. B. Su, G. Zhou, J. Huang, E. Song, A. Nag, and Z. Xia, Mn2+-Doped metal halide perovskites: structure, photoluminescence, and application. Laser Photonics Rev. 15, 2000334 (2021).

    Article  CAS  Google Scholar 

  53. M. Song, M. Yang, and J. Hao, Pathogenic virus detection by optical nanobiosensors. Cell Rep. Phys. Sci. 2, 100288 (2021).

    Article  Google Scholar 

  54. N. Guo, Y. Huang, H. You, M. Yang, Y. Song, K. Liu, and Y. Zheng, Ca9Lu(PO4)7:Eu2+, Mn2+: a potential single-phased white-light-emitting phosphor suitable for white-light-emitting diodes. Inorg. Chem. 49, 10907–10913 (2010).

    Article  CAS  Google Scholar 

  55. X. Wang, Z. Zhao, Q. Wu, C. Wang, Q. Wang, L. Yanyan, and Y. Wang, Structure, photoluminescence and abnormal thermal quenching behavior of Eu2+-doped Na3Sc2(PO4)3: a novel blue-emitting phosphor for n-UV LEDs. J. Mater. Chem. C 4, 8795–8801 (2016).

    Article  CAS  Google Scholar 

  56. C. Li, M. Ronnier Luo, G. Cui, and C. Li, Evaluation of the CIE colour rendering index. Color. Technol. 127, 129–135 (2011).

    Article  CAS  Google Scholar 

  57. Y. Zhao, R. Yang, W. Wan, X. Jing, T. Wen, and S. Ye, Stabilizing CsPbBr3 Quantum dots with conjugated aromatic ligands and their regulated optical behaviors. Chem. Eng. J. 389, 124453 (2020).

    Article  CAS  Google Scholar 

  58. M. He, C. Wang, J. Li, J. Wu, S. Zhang, H.C. Kuo, L. Shao, S. Zhao, J. Zhang, F. Kang, and G. Wei, CsPbBr3-Cs4PbBr6 composite nanocrystals for highly efficient pure green light emission. Nanoscale 11, 22899–22906 (2019).

    Article  CAS  Google Scholar 

  59. T. Deng, S. Zhang, R. Zhou, T. Yu, M. Wu, X. Zhang, K. Chen, and Y. Zhou, Defect-related luminescence behavior of a Mn4+ non-equivalently doped fluoroantimonate red phosphor. Dalton Trans. 51, 608–617 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (22078138), Jiangxi Provincial Natural Science Foundation (20202ACBL203009), and "Thousand Talents Plan" of Jiangxi Province (Jxsq2018101018).

Funding

National Natural Science Foundation of China,22078138,Sili Ren, Natural Science Foundation of Jiangxi Province,20202ACBL203009,Sili Ren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sili Ren.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 788 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Ren, S. Single-Site Mn2+-Activated and Sr-Alloyed Ca3(PO4)2 Red Phosphors and Their Lighting Applications. J. Electron. Mater. 52, 547–558 (2023). https://doi.org/10.1007/s11664-022-10024-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10024-y

Keywords

Navigation