Skip to main content

Advertisement

Log in

Optimization and Analysis of an Output Performance Calculation Model for a Cesium Thermionic Energy Converter

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We propose a modified Kuznetsov model to calculate the output performance of a cesium thermionic energy converter (TEC). Based on this model, it can be found that the power density and conversion efficiency increase continuously as the emitter temperature increases. Reducing the work function of the emitter can significantly increase the power density, whereas the conversion efficiency with the change of the work function shows a parabolic trend with a downward-facing opening. The power density of the TEC has an approximate step function relation with the collector temperature, which should be selected at the inflection point of the function curve during device design. Considering the effects of electrode spacing and cesium vapor pressure, the product of the two influencing factors should be kept at approximately 74 Pa mm to reduce the barrier level of the electrode gap. Through further structural optimization design, the conversion efficiency of the TEC could be improved at a 1600 K emitter temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8

Similar content being viewed by others

References

  1. Y. Wang, S.H. Su, T. Liu, G.Z. Su, and J.C. Chen, Energy 90, 1575 (2015).

    Article  Google Scholar 

  2. V.I. Kuznetsov, A.Y. Ender, and V.I. Babanin, J. Appl. Phys. 124, 44502 (2018).

    Article  Google Scholar 

  3. H.C. Zhang, D.Z. Yin, X.M. Chai, B.R. Kong, and X.T. Liu, Front. Energy Res. 7, 167 (2020).

    Article  Google Scholar 

  4. R.A. Becker, J. Spacecr. Rockets 4, 847 (1967).

    Article  Google Scholar 

  5. I.A. Dorfgorsky, A.A. Yelchaninov, A.N. Luppov, V.P. Nicitin, B.G. Ogloblin, G.V. Sinyutin, and V.A. Usov, in AIP Conference Proceedings (1992), p. 35.

  6. M.R. Martinez, O. Izhvanov, B. Robertson, P.N. Clark, H.H. Streckert, and J.L. Desplat, SAE Tech. Pap. 746, 926 (2005).

    CAS  Google Scholar 

  7. W.R. Determan, V.P. Kolesnikov, G.S. Mezheritsky, V.Y. Poupko, I.N. Prilezhaeva, A.N. Ryzhkov, A.V. Vizgalov, and A.V. Zrodnikov, in 12th Symposium on Space Nuclear Power and Propulsion (1995), p. 211.

  8. Y. Momozaki, M.S. El-Genk, in Space Technology and Applications International Forum—Staif (2003), p. 757.

  9. V.I. Yarygin and A.S. Mustafaev, J. Phys. Chem. B 9, 546 (2015).

    CAS  Google Scholar 

  10. G. Xiao, G.H. Zheng, M. Qiu, Q. Li, D.S. Li, and M.J. Ni, Appl. Energy 208, 1318 (2017).

    Article  Google Scholar 

  11. J.H. Lee, I. Bargatin, N.A. Melosh, and R.T. Howe, Appl. Phys. Lett. 100, 573 (2012).

    Google Scholar 

  12. W. Zheng and M. Kando, J. Appl. Phys. 39, 5273 (2000).

    Article  CAS  Google Scholar 

  13. E. Rahman and A. Nojeh, in 2021 34th International Vacuum Nanoelectronics Conference (2021), p. 97.

  14. E. Rahman and A. Nojeh, Phys. Rev. Appl. 14, 24082 (2020).

    Article  CAS  Google Scholar 

  15. D. Jensen, A.N.M. Taufiq Elahi, M. Ghashami, and K. Park, Phys. Rev. Appl. 15, 24062 (2021).

    Article  CAS  Google Scholar 

  16. K.G. Hernqvist, in Proceedings of the IEEE (2005), p. 748.

  17. D.V. Paramonov and M.S. ElGenk, Energy Convers. Manag. 38, 533 (1997).

    Article  CAS  Google Scholar 

  18. A.S. Mustafaev, V.I. Yarygin, V.S. Soukhomlinov, A.B. Tsyganov, and I.D. Kaganovich, J. Appl. Phys. 124, 123304 (2008).

    Article  Google Scholar 

  19. N.S. Rasor, J. Appl. Phys. 120, 8 (2016).

    Article  Google Scholar 

  20. Z.M. Ding, L.G. Chen, and F.R. Sun, J. Energy Inst. 88, 169 (2015).

    Article  CAS  Google Scholar 

  21. N.S. Rasor, in Proceedings of the IEEE (1963), p. 733.

  22. G.N. Hatsopoulos, E.P. Gyftopoulos, Thermionic energy conversion (The MIT Press, 1973).

  23. M.S. El-Genk and J.R. Luke, Energy Convers. Manag. 40, 319 (1999).

    Article  Google Scholar 

  24. S. Kitrilakis and M. Meeker, Adv. Energy Mater. 3, 59 (1963).

    CAS  Google Scholar 

  25. M.S. El-Genk and Y. Momozaki, Energy Convers. Manag. 43, 911 (2002).

    Article  CAS  Google Scholar 

  26. L.A. DuBridge and W.W. Roehr, Phys. Rev. Lett. 42, 52 (1932).

    CAS  Google Scholar 

  27. B.S. Rump and B.L. Gehman, J. Appl. Phys. 36, 2352 (1965).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Natural Science Foundation of China (No.2180051117) and the National Magnetic Confinement Fusion Program of China (No. 2018YFE0312200)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhizhong Jiang.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Fang, S., Jiang, Z. et al. Optimization and Analysis of an Output Performance Calculation Model for a Cesium Thermionic Energy Converter. J. Electron. Mater. 52, 437–445 (2023). https://doi.org/10.1007/s11664-022-10010-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10010-4

Keywords

Navigation