Skip to main content
Log in

Electromagnetic Interference Shielding Performance of CNT Sponge/PDMS Force-Sensitive Composites

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In order to obtain a force-sensitive composite structure with high-performance electromagnetic interference (EMI) shielding, this paper proposes a method for preparing flexible force-sensitive composites by backfilling PDMS into a carbon nanotube (CNT) sponge using a vacuum-assisted method. Compared with CNTs/PDMS force-sensitive composites with different content prepared by the traditional solution blending method, the CNT sponge/PDMS force-sensitive composite prepared by the vacuum-impregnation method demonstrated sensitivity of 70 in a strain range of 35–50% at a thickness of 1 mm with a low filler content of 1 wt.%, and also showed excellent cyclic stability. The EMI shielding effectiveness (SE) reached 34.56 dB in the X band, and it still maintained high EMI SE (33.68 dB) after 500 repeated stretching cycles, which would be sufficient for commercial applications. The prepared CNT sponge/PDMS force-sensitive composite not only meets the basic sensitivity at low content (only 1 wt.%) but also has high EMI SE (34.56 dB) due to its high electrical conductivity (53 S/m), which makes it have potential applications in flexible stress sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. J.C. Yang, J. Mun, S.Y. Kwon, S. Park, Z. Bao, and S. Park, Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 31, 1904765 (2019).

    Article  CAS  Google Scholar 

  2. Y. Liu, M. Pharr, and G.A. Salvatore, Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 11, 9614 (2017).

    Article  CAS  Google Scholar 

  3. Y. Yang, X. Hao, L. Zhang, and L. Ren, Application of Scikit and Keras libraries for the classification of iron ore data acquired by laser-induced breakdown spectroscopy(LIBS). Sensors 20, 1393 (2020).

    Article  CAS  Google Scholar 

  4. X. Liu, X. Hao, B. Xue, B. Tai, and H. Zhou, Two-dimensional flame temperature and emissivity distribution measurement based on element doping and energy spectrum analysis. IEEE Access. 8, 200863 (2020).

    Article  Google Scholar 

  5. X. Bing, H. Xiaojian, L. Xuanda, H. Ziqi, and Z. Hanchang, Simulation of an NSGA-III based fireball inner-temperature-field reconstructive method. IEEE Access. 8, 43908 (2020).

    Article  Google Scholar 

  6. W. Tang, L. Lu, D. Xing, H. Fang, Q. Liu, and K.S. Teh, A carbon-fabric/polycarbonate sandwiched film with high tensile and EMI shielding comprehensive properties: an experimental study. Compos. B 152, 8 (2018).

    Article  CAS  Google Scholar 

  7. N. Wen, L. Zhang, D. Jiang, Z. Wu, B. Li, C. Sun, and Z. Guo, Emerging flexible sensors based on nanomaterials: recent status and applications. J. Mater. Chem. A 8, 25499 (2020).

    Article  CAS  Google Scholar 

  8. T. Li, J. Li, A. Zhong, F. Han, R. Sun, C.-P. Wong, F. Niu, G. Zhang, and Y. Jin, A flexible strain sensor based on CNTs/PDMS microspheres for human motion detection. Sens. Actuators A 306, 111959 (2020).

    Article  CAS  Google Scholar 

  9. H. Yuan, Y. Xiong, Q. Shen, G. Luo, D. Zhou, and L. Liu, Synthesis and electromagnetic absorbing performances of CNTs/PMMA laminated nanocomposite foams in x-band. Compos. A 107, 334 (2018).

    Article  CAS  Google Scholar 

  10. S. Zhu, C. Xing, F. Wu, X. Zuo, Y. Zhang, C. Yu, M. Chen, W. Li, Q. Li, and L. Liu, Cake-like flexible carbon nanotubes/graphene composite prepared via a facile method for high-performance electromagnetic interference shielding. Carbon 145, 259 (2019).

    Article  CAS  Google Scholar 

  11. S. Gupta, and N.-H. Tai, Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band. Carbon 152, 159 (2019).

    Article  CAS  Google Scholar 

  12. D.X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P.G. Ren, J.H. Wang, and Z.M. Li, Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 25, 559 (2015).

    Article  CAS  Google Scholar 

  13. Q. Jiang, X. Liao, J. Li, J. Chen, G. Wang, J. Yi, Q. Yang, and G. Li, Flexible thermoplastic polyurethane/reduced graphene oxide composite foams for electromagnetic interference shielding with high absorption characteristic. Compos. A 123, 310 (2019).

    Article  CAS  Google Scholar 

  14. N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P.C. Eklund, Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett. 6, 1141 (2006).

    Article  CAS  Google Scholar 

  15. T. Kuang, L. Chang, F. Chen, Y. Sheng, D. Fu, and X. Peng, Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding. Carbon 105, 305 (2016).

    Article  CAS  Google Scholar 

  16. Y.-Q. Li, Y.A. Samad, K. Polychronopoulou, and K. Liao, Lightweight and highly conductive aerogel-like carbon from sugarcane with superior mechanical and emi shielding properties. ACS Sustain. Chem. Eng. 3, 1419 (2015).

    Article  CAS  Google Scholar 

  17. D. Feng, P. Liu, and Q. Wang, Exploiting the piezoresistivity and EMI shielding of polyetherimide/carbon nanotube foams by tailoring their porous morphology and segregated CNT networks. Compos. A 124, 105463 (2019).

    Article  CAS  Google Scholar 

  18. H. Mei, X. Zhao, J. Xia, F. Wei, D. Han, S. Xiao, and L. Cheng, Compacting CNT sponge to achieve larger electromagnetic interference shielding performance. Mater. Des. 144, 323 (2018).

    Article  CAS  Google Scholar 

  19. Y. Chen, H.B. Zhang, Y. Yang, M. Wang, A. Cao, and Z.Z. Yu, High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding. Adv. Funct. Mater. 26, 447 (2016).

    Article  CAS  Google Scholar 

  20. Z. Chen, C. Xu, C. Ma, W. Ren, and H.M. Cheng, Lightweight andflexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25, 1296 (2013).

    Article  CAS  Google Scholar 

  21. X. Gui, J. Wei, K. Wang, A. Cao, H. Zhu, Y. Jia, Q. Shu, and D. Wu, Carbon nanotube sponges. Adv. Mater. 22, 617 (2010).

    Article  CAS  Google Scholar 

  22. D. Lu, Z. Mo, B. Liang, L. Yang, Z. He, H. Zhu, Z. Tang, and X. Gui, Flexible, Lightweight lightweight carbon nanotube sponges and composites for high-performance electromagnetic interference shielding. Carbon 133, 457 (2018).

    Article  CAS  Google Scholar 

  23. S. Liu, V.S. Chevali, Z. Xu, D. Hui, and H. Wang, A review of extending performance of epoxy resins using carbon nanomaterials. Compos. B 136, 197 (2018).

    Article  CAS  Google Scholar 

  24. H. Song, and S. Lim, Screen-printing process of electromagnetic interference (EMI) shielding materials on mulberry paper. Mater. Manuf. Process 35, 1701 (2020).

    Article  CAS  Google Scholar 

  25. W. Yu, Y. Peng, L. Cao, W. Zhao, and X. Liu, Free-standing laser-induced graphene films for high-performance electromagnetic interference shielding. Carbon 183, 600 (2021).

    Article  CAS  Google Scholar 

  26. Y. Pang, H. Tian, L. Tao, Y. Li, X. Wang, N. Deng, Y. Yang, and T.-L. Ren, Flexible, Highly highly sensitive, and wearable pressure and strain sensors with graphene porous network structure. ACS Appl. Mater. Interfaces 8, 26458 (2016).

    Article  CAS  Google Scholar 

  27. A. Abdulhameed, N.Z.A. Wahab, M.N. Mohtar, M.N. Hamidon, S. Shafie, and I.A. Halin, Methods and applications of electrical conductivity enhancement of materials using carbon nanotubes. J. Electron. Mater. 50, 3207 (2021).

    Article  CAS  Google Scholar 

  28. H. Oraby, I. Naeem, M. Darwish, M.H. Senna, and H.R. Tantawy, Effective electromagnetic interference shielding using foamy polyurethane composites. Polym. Compos. 42, 3077 (2021).

    Article  CAS  Google Scholar 

  29. B. Shen, Y. Li, D. Yi, W. Zhai, X. Wei, and W. Zheng, Microcellular graphene foam for improved broadband electromagnetic interference shielding. Carbon 102, 154 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China, Grant No. 51775522, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, Grant No. 201905D121001, Shanxi ‘1331 Project’ Key Subjects Construction, Applied Basic Research Program in Shanxi Province, Grant Nos. 201901D211203, 201801D221230.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lishuang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Liu, J., Wang, R. et al. Electromagnetic Interference Shielding Performance of CNT Sponge/PDMS Force-Sensitive Composites. J. Electron. Mater. 52, 429–436 (2023). https://doi.org/10.1007/s11664-022-10008-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10008-y

Keywords

Navigation