Skip to main content

Advertisement

Log in

Optimization of CdZnyS1−y Buffer Layer Properties for a ZnO/CZTSxSe1−x/Mo Solar Cell to Enhance Conversion Efficiency

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, we focus on optimizing the solar performance of a CZTSSe-based solar cell by adjusting the zinc and sulfur concentrations in the CdZnS buffer layer and the quinary absorber CZTSSe. The state-of-the-art work is to combine the ZnS and CdS binaries into CdZnS ternary used as a buffer layer in both CZTS- and CZTSSe-based solar cells. An overall study of its properties is carried out taking into account the strain present at the heterointerface, defect density, bandgap energy and the interface state density. As a result, the highest efficiency η = 14.59% was achieved with a sulfur content of 0.55 and a zinc content of 0.70 to bandgap energies of 1.25 and 3.12 eV for CZTSSe and CdZnS materials, respectively. Our simulation is validated by the reproducibility of solar cell performance under the same conditions, and an enhancement of the conversion efficiency of about Δη = 5.55% will be achieved when the CdS layer is replaced by CdZnS in the ZnO/CdS/CZTSSe/Mo/Glass solar device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Cherouana and R. Labbani, Study of CZTS and CZTSSe Solar Cells for Buffer Layers Selection. Appl. Surf. Sci. 424, 251–255 (2017).

    Article  CAS  Google Scholar 

  2. T.S. Lopes, J.M. Cunha, S. Bose, J.R. Barbosa, J. Borme, O. Donzel-Gargand, and P.M. Salomé, Rear Optical Reflection and Passivation Using a Nanopatterned Metal/Dielectric Structure in Thin-Film Solar Cells. IEEE J. Photovolt. 9, 1421–1427 (2019).

    Article  Google Scholar 

  3. S. Tripathi, P. Lohia, and D.K. Dwivedi, Contribution to Sustainable and Environmental Friendly Non-toxic CZTS Solar Cell with an Innovative Hybrid Buffer Layer. Sol. Energy 204, 748–760 (2020).

    Article  CAS  Google Scholar 

  4. K. Patel, N. G. Dhere, V. Kheraj, and D. Shah, Cu2ZnSnS4 Thin Film Solar Cell: Fabrication and Characterization. Electrical and Electronic Devices, Circuits, and Materials: Technological Challenges and Solutions, 411–426 (2021).

  5. H. Katagiri, K. Jimbo, W.S. Maw, K. Oishi, M. Yamazaki, H. Araki, and A. Takeuchi, Development of CZTS-Based Thin Film Solar Cells. Thin Solid Films 517, 2455–2460 (2009).

    Article  CAS  Google Scholar 

  6. E. Ojeda-Durán, K. Monfil-Leyva, J. Andrade-Arvizu, I. Becerril-Romero, Y. Sánchez, R. Fonoll-Rubio, and E. Saucedo, CZTS Solar Cells and the Possibility of Increasing VOC Using Evaporated Al2O3 at the CZTS/CdS Interface. Sol. Energy 198, 696–703 (2020).

    Article  Google Scholar 

  7. Z. Shi, D. Attygalle, and A.H. Jayatissa, Kesterite-Based Next Generation High Performance Thin Film Solar Cell: Current Progress and Future Prospects. J. Mater. Sci. Mater. Electron. 28, 2290–2306 (2017).

    Article  CAS  Google Scholar 

  8. W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, and D.B. Mitzi, Device Characteristics of CZTSSe Thin-Film Solar Cells with 126% Efficiency. Adv. Energy Mater. 4, 1301465 (2014).

    Article  Google Scholar 

  9. X. Min, L. Guo, Q. Yu, B. Duan, J. Shi, H. Wu, and Q. Meng, Enhancing Back Interfacial Contact by In-situ Prepared MoO3 thin layer for Cu2ZnSnSxSe4x Solar Cells. Sci. China Mater. 62, 797–802 (2019).

    Article  CAS  Google Scholar 

  10. D.B. Khadka, S. Kim, and J. Kim, Effects of Ge Alloying on Device Characteristics of Kesterite-Based CZTSSe Thin Film Solar Cells. J. Phys. Chem. C 120, 4251–4258 (2016).

    Article  CAS  Google Scholar 

  11. J. Eun Song, S. Kyung Hwang, J. Hyun Park, and J. Young Kim, A Thin In2S3 Interfacial Layer for Reducing Defects and Roughness of Cu2ZnSn (S, Se) 4 Thin-Film Solar Cells. ChemSusChem 15, e202102350 (2022).

    Article  CAS  Google Scholar 

  12. J. Wang, J. Zhou, X. Xu, F. Meng, C. Xiang, L. Lou, and Q. Meng, Ge‐bidirectional Diffusion to Simultaneously Engineer Back Interface and Bulk Defects in the Absorber for Efficient CZTSSe Solar Cells. Adv. Mater. 2202858 (2022).

  13. S. Giraldo, M. Neuschitzer, T. Thersleff, S. López-Marino, Y. Sánchez, H. Xie, and E. Saucedo, Large, Efficiency Improvement in Cu2ZnSnSe4 Solar Cells by Introducing a Superficial Ge Nanolayer. Adv. Energy Mater. 5, 1501070 (2015).

    Article  Google Scholar 

  14. M. Neuschitzer, M.E. Rodriguez, M. Guc, J.A. Marquez, S. Giraldo, I. Forbes, and E. Saucedo, Revealing the Beneficial Effects of Ge Doping on Cu2ZnSnSe4 Thin Film Solar Cells. J. Mater. Chem. A 6, 11759–11772 (2018).

    Article  CAS  Google Scholar 

  15. K. Sun, C. Yan, J. Huang, F. Liu, J. Li, H. Sun, and X. Hao, Beyond 10% Efficiency Cu2ZnSnSe4 Solar Cells Enabled by Modifying the Heterojunction Interface Chemistry. J. Mater. Chem. A 7, 27289–27296 (2019).

    Article  CAS  Google Scholar 

  16. M. Chadel, A. Chadel, M.M. Bouzaki, M. Aillerie, B. Benyoucef, and J.P. Charles, Optimization by Simulation of the Nature of the Buffer, the Gap Profile of the Absorber and the Thickness of the Various Layers in CZTSSe Solar Cells. Mater. Res. Express 4, 115503 (2017).

    Article  Google Scholar 

  17. M. Yousefi, M. Minbashi, Z. Monfared, N. Memarian, and A. Hajjiah, Improving the Efficiency of CZTSSe Solar Cells by Engineering the Lattice Defects in the Absorber Layer. Sol. Energy 208, 884–893 (2020).

    Article  CAS  Google Scholar 

  18. B. Eghbalifar, H. Izadneshan, G. Solookinejad, and L. Separdar, Investigating In2S3 as the Buffer Layer in CZTSSe Solar Cells Using Simulation and Experimental Approaches. Solid State Commun. 343, 114654 (2022).

    Article  CAS  Google Scholar 

  19. T. Geremew and T. Abza, Microstructural and Optical Characterization of Heterostructures of ZnS/CdS and CdS/ZnS Synthesized by Chemical Bath Deposition Method. Adv. Mater. Sci. Eng. 1–11 (2020).

  20. H. Benamra, H. Saidi, A. Attaf, M.S. Aida, A. Derbali, and N. Attaf, Physical Properties of Al-doped ZnS Thin Films Prepared by Ultrasonic Spray Technique. Surf. Interfaces 21, 100645 (2020).

    Article  CAS  Google Scholar 

  21. A. Aissat, H. Arbouz, and J.P. Vilcot, Optimization and Improvement of a Front Graded Bandgap CuInGaSe2 Solar Cell. Sol. Energy Mater. Sol. Cells 180, 381–385 (2018).

    Article  CAS  Google Scholar 

  22. L. Chenini, A. Aissat, and J.P. Vilcot, Optimization of Inter-Subband Absorption of InGaAsSb/GaAs Quantum Wells Structure. Superlattices Microstruct. 129, 115–123 (2019).

    Article  CAS  Google Scholar 

  23. M. Boubakeur, A. Aissat, M.B. Arbia, H. Maaref, and J.P. Vilcot, Enhancement of the Efficiency of Ultra-thin CIGS/Si Structure for Solar Cell Applications. Superlattices Microstruct. 138, 106377 (2020).

    Article  CAS  Google Scholar 

  24. F.A. Jhuma, M.Z. Shaily, and M.J. Rashid, Towards High-Efficiency CZTS Solar Cell Through Buffer Layer Optimization. Mater. Renew. Sustain. Energy 8, 1–7 (2019).

    Article  Google Scholar 

  25. M. Minbashi, A. Ghobadi, M.H. Ehsani, H.R. Dizaji, and N. Memarian, Simulation of High Efficiency SnS-Based Solar Cells with SCAPS. Sol. Energy 176, 520–525 (2018).

    Article  CAS  Google Scholar 

  26. M. Burgelman, J. Verschraegen, S. Degrave, and P. Nollet, Modeling Thin-Film PV Devices. Prog. Photovolt. Res. Appl. 12, 143–153 (2004).

    Article  CAS  Google Scholar 

  27. M.B. Arbia, H. Helal, F. Saidi, and H. Maaref, Investigation of 19 μm GINA Simulated as Intrinsic Layer in a GaAs Homojunction: From 25% Towards 324% Conversion Yield. J. Electron. Mater. 49, 6308–6316 (2020).

    Article  CAS  Google Scholar 

  28. T. Enkhbat, S. Kim, and J. Kim, Device Characteristics of Band Gap Tailored 10.04% Efficient CZTSSe Solar Cells Sprayed from Water-Based Solution. ACS Appl. Mater. Interfaces 11, 36735–36741 (2019).

    Article  CAS  Google Scholar 

  29. O. Gunawan, T. Gokmen, and D.B. Mitzi, Suns-VOC Characteristics of High Performance Kesterite Solar Cells. J. Appl. Phys. 116, 084504 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Aissat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boubakeur, M., Aissat, A., Chenini, L. et al. Optimization of CdZnyS1−y Buffer Layer Properties for a ZnO/CZTSxSe1−x/Mo Solar Cell to Enhance Conversion Efficiency. J. Electron. Mater. 52, 284–292 (2023). https://doi.org/10.1007/s11664-022-09986-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09986-w

Keywords

Navigation