Skip to main content
Log in

The Effects of Mo Partial Substitution at the Mn Site on Electroresistance Behaviour in La0.7Ba0.3Mn1−xMoxO3 (x = 0, 0.01, 0.02, 0.03, 0.04) Manganites

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, the structural, electrical, and magnetic properties and electroresistance (ER) effects in La0.7Ba0.3Mn1−xMoxO3 (x = 0–0.04) prepared using the solid-state method have been studied. All samples exhibited a metallic to insulating behaviour accompanied by ferromagnetic properties. Mo substitution increased resistivity under an applied current of 10 mA while the higher applied current of 20 mA reduced the resistivity and led to the ER effect. Mo-substituted samples exhibited almost constant and larger ER values than the x = 0 sample within a temperature range of 30–180 K, which may be due to the presence of dual double-exchange interactions of Mn2+-O-Mn3+ and Mn3+-O-Mn4+ along with the formation of more conductive paths in the metallic region. Meanwhile, the Mo-substituted samples exhibited a reduction in the ER effect in the insulating region which was probably due to the strong localization of charge carriers. The result was attributed to the induction of Mn2+ which may contribute to the lattice distortion effect and thus enhanced electron-lattice attraction in the Mo-substituted samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Solanki, D. Dhruv, H. Boricha, A. Zankat, K.N. Rathod, B. Rajyaguru, R.K. Trivedi, R.D. Joshi, S. Mukerjee, P.S. Solanki, and N.A. Shah, Charge Transport Mechanisms and Magnetoresistance Behavior of La0.6Pr0.1Ca0.3MnO3 Manganite. J. Solid State Chem. 288, 121446 (2020).

    Article  CAS  Google Scholar 

  2. K. Manjula, B. Rajyaguru, K. Gadani, N. Vaghela, H. Dadhich, D. Venkateshwarlu, A.D. Joshi, N.A. Shah, and P.S. Solanki, Electric Field Effects on Charge Conduction for LaMnO3 Controlled La0.7Ca0.3MnO3 Manganite. Surf. Interfac. 30, 101949 (2022).

    Article  Google Scholar 

  3. S. Karadavut, F. Denbri, C. Terzioglu, O. Ozturk, and L.P. Altintas, Enhancing Magnetoresistive Features of Iron-Substituted La0⋅8Sr0⋅2MnO3 Ceramic Manganites. Ceram. Int. 48, 29620 (2022).

    Article  CAS  Google Scholar 

  4. S. Yang, Q. Chen, Y. Yang, Y. Gao, R. Xu, H. Zhang, and J. Ma, Silver Addition in Polycrystalline La0.7Ca0.3MnO3: Large Magnetoresistance Ann Anisotropic Magnetoresistance for Magnetic Sensor. J. Alloys Compd. 882, 160719 (2021).

    Article  CAS  Google Scholar 

  5. L. Yin, C. Wang, and Q. Shen, Enhancement of Intrinsic Magnetoresistance in Zn Doped La0.9Sr0.1MnO3 Epitaxial Films. J. Alloys Compd. 859, 157817 (2020).

    Article  Google Scholar 

  6. I.A. Abdel Latif, Rare Earth Manganites and their Applications. J. Phys. 1, 15 (2012).

    Google Scholar 

  7. A.E.A. Mohamed, B. Hernando, and M.E. Díaz-garcía, Room Temperature Magneto-Transport Properties of La0.7Ba0.3Mn03 Manganite. J. Alloys Compd. 695, 2645–2651 (2016).

    Article  Google Scholar 

  8. S.T. Mahmud, M.M. Saber, H.S. Alagoz, R. Bouveyron, J. Jung, and K.H. Chow, Intrinsic Electroresistance of Sm0.60Sr0.40MnO3 and Sm0.55Sr0.45MnO3. Appl. Phys. Lett. 100, 1 (2012).

    Google Scholar 

  9. Y. Nishi, Challenges and Opportunities for Future Non-Volatile Memory Technology. Curr. Appl. Phys. 11, 101 (2011).

    Article  Google Scholar 

  10. H. Song, M. Tokunaga, S. Imamori, Y. Tokunaga, and T. Tamegai, Nonvolatile Multivalued Memory Effects in Electronic Phase-Change Manganites Controlled by Joule Heating. Phys. Rev. B 74, 052404 (2006).

    Article  Google Scholar 

  11. W.J. Lu, Y.P. Sun, B.C. Zhao, X.B. Zhu, and W.H. Song, Giant Electroresistance and Nonlinear Conduction in Electron-Doped Ca0.9Ce0.1MnO3. Solid State Commun. 137, 288–291 (2006).

    Article  CAS  Google Scholar 

  12. C. Jooss, L. Wu, T. Beetz, and Y. Zhu, Polaron Melting and Ordering as Key Mechanisms for Colossal Resistance Effects in Manganites. Proc. Natl. Acad. Sci. 104, 13597 (2007).

    Article  CAS  Google Scholar 

  13. R. Mohan, N. Kumar, B. Singh, N.K. Gaur, S. Bhattacharya, S. Rayaprol, A. Dogra, S.K. Gupta, S.J. Kim, and R.K. Singh, Colossal Electroresistance in Sm0.55Sr0.45MnO3. J. Alloys Compd. 508, 32 (2010).

    Article  Google Scholar 

  14. R. Kumar, A.K. Gupta, D.P. Singh, V. Kumar, G.L. Bhalla, and N. Khare, Current-Induced Effect on Resistivity and Magnetoresistance of La0.67Ba0.33MnO3 Manganite. J. Magn. Magn. Mater. 320, 2741 (2008).

    Article  CAS  Google Scholar 

  15. T. Wu, S.B. Ogale, J.E. Garrison, B. Nagaraj, A. Biswas, Z. Chen, R.L. Greene, R. Ramesh, T. Venkatesan, and A.J. Millis, Electroresistance and Electronic Phase Separation in Mixed-Valent Manganites. Phys. Rev. Lett. 86, 5998 (2001).

    Article  CAS  Google Scholar 

  16. L. Balcells, L. Pena, R. Galceran, A. Pomar, B. Bozzo, Z. Konstantinovic, F. Sandiumenge, and B. Martines, Electroresistance and Joule Heating Effects in Manganite Thin Films. J. Appl. Phys. 113, 073703 (2013).

    Article  Google Scholar 

  17. Y.H. Sun, Y.G. Zhao, X.L. Zhang, S.N. Gao, P.L. Lang, X.P. Zhang, and M.H. Zhu, Electric Current-Induced Giant Electroresistance in Epitaxial La0.67Sr0.33MnO3 Thin Films. J. Magn. Magn. Mater. 311, 644 (2007).

    Article  CAS  Google Scholar 

  18. S.T. Mahmud, M.M. Saber, H.S. Alagoz, K. Biggart, R. Bouveyron, M. Khan, J. Jung, and K.H. Chow, Disorder Enhanced Intrinsic Electroresistance in Sm0.60Sr0.40Mn1-xFexO3. Appl. Phys. Lett. 100, 1 (2012).

    Google Scholar 

  19. L. Zhang, X. Li, F. Wang, T. Wang, and W. Shi, Collosal Electroresistance and Magnetoresistance Effect in Polycrystalline Perovskite Cobalties Nd1xSrxCoO3 (x= 0.1,0.2, 0.3). Mat. Res. Bull. 48, 1088 (2013).

    Article  CAS  Google Scholar 

  20. S.T. Mahmud, M.M. Saber, H.S. Alagoz, J. Jung, and K.H. Chow, Current Density and Intrinsic Electroresistance of the Sm1-xSrxMnO3 manganite. J. Phys. Chem. Solids 74, 1865 (2013).

    Article  CAS  Google Scholar 

  21. S.S. Chen, C.P. Yang, and Q. Dai, Effect of Microstructure on the Electroresistance of Nd0.7Sr0.3MnO3 Perovskite Ceramics. J. Alloys Compd. 491, 1 (2010).

    Article  CAS  Google Scholar 

  22. T. Qian, P. Tong, B. Kim, S.I. Lee, N. Shin, S. Park, and B.G. Kim, Enhancement of Ferromagnetism by Decreasing Tolerance Factor in Electron-Doped Manganites. Phys. Rev. B 77, 094423 (2008).

    Article  Google Scholar 

  23. G. Narsinga Rao, J.W. Chen, S. Neeleshwar, Y.Y. Chen, and M.K. Wu, Enhanced Magnetoresistance and Griffiths Phase Induced by Mo Substitution in La0.7Ca0.15Sr0.15Mn1-xMoxO3 (0 ≤ x ≤ 0.05). J. Phys. D. Appl. Phys. 42, 1 (2009).

    Article  Google Scholar 

  24. J.W. Chen, and G.N. Rao, Magnetotransport Properties of Mo Substituted La0.7Ca0.3Mn1−xMoxO3 Perovskites. Solid State Sci. 53, 17 (2016).

    Article  CAS  Google Scholar 

  25. J.W. Chen, and G. Narsinga Rao, Induced Ferromagnetic Metallic State and Griffiths Phase in La1/2Ca1/2Mn1-xMoxO3 Compounds. Mater. Chem. Phys. 136, 254 (2012).

    Article  CAS  Google Scholar 

  26. D.C. Kundaliya, R. Vij, R.G. Kulkarni, B. Varughese, A.K. Nigam, and S.K. Malik, Magnetic and Transport Properties of Mo Substituted La0.67Ba0.33Mn1-xMoxO3 Perovskite System. J. Appl. Phys. 98, 013905 (2005).

    Article  Google Scholar 

  27. M.S. Sazali, N. Ibrahim, R. Mohamed Rajmi, and A.K. Yahya, Effect of Fe3+ Partial Substitution at Mn-site on Electroresistance Behavior in La0.7Ba0.3Mn1-xFexO3 (x = 0 and 0.02) Manganites. Solid State Phenom. 317, 3 (2021).

    Article  Google Scholar 

  28. M. Anchit, M.A. Bhar, D.K. Pandey, S. Tarachand Bhattacharya, N.K. Gaur, and G.S. Okram, Structural, Magnetotransport and Thermal Properties of Sm Substituted La0.7-xSmxBa0.3MnO3 (0≤x≤0.2) Manganites. J. Magn. Magn. Mater. 424, 459 (2016).

    Google Scholar 

  29. I. Mahsuri, and D. Varshney, Structure and Electrical Resistivity of La1-xBaxMnO3 (0.25≤x≤0.35) Perovskite. J. Alloys Compd 513, 256 (2012).

    Article  Google Scholar 

  30. K. Momma, and F. Izumi, VESTA: A Three-Dimensional Visualization System for Electronic and Structural Analysis. J. Appl. Crystallogr. 41, 653 (2008).

    Article  CAS  Google Scholar 

  31. A. Sen, Influence of Ba and Mo Co-Doping on the Structural, Electrical, Magnetic and Optical Properties of BiFeO3 Ceramics. Mater. Res. Express. 7, 16312 (2020).

    Article  CAS  Google Scholar 

  32. D.C. Kundaliya, Magnetic and Transport Properties of Mo Substituted La0.67Ba0.33Mn1-xMoxO3 Perovskite System. J. Appl. Phys. 98, 103905 (2005).

    Article  Google Scholar 

  33. S. Chen, W. Ruilong, W. Hao, and C. Yang, Effect of Heat Treatment on Electroresistance in Nd0.67Sr0.33MnO3 Ceramics. J. Rare Earth. 28, 251 (2020).

    Article  Google Scholar 

  34. M. Baazaoui, S. Zemni, M. Boudard, H. Rahmouni, M. Oumezzine, and A. Selmi, Conduction Mechanism in La0.67Ba0.33Mn1-xFexO3 (x = 0-0.2) Perovskites. Phys. B Condens. Matter. 405, 1470–1474 (2010).

    Article  CAS  Google Scholar 

  35. M.K. Verma, N.D. Sharma, S. Sharma, N. Choudhary, and D. Singh, High Magnetoresistance in La0.5Nd0.15Ca0.25A0.1MnO3 (A = Ca, Li, Na, K) CMR Manganites: Correlation Between their Magnetic and Electrical Properties. Mater. Res. Bull. 125, 110813 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude for the financial support provided by the Malaysian Ministry of Higher Education (MOHE) and the Faculty of Applied Sciences (FSG), Universiti Teknologi MARA through the Fundamental Research Grant Scheme (FRGS) (600-IRMI/FRGS 5/3 (330/2019).

Funding

Funding was provided by Malaysian Ministry of Higher Education, 600-IRMI/FRGS 5/3 (330/2019), Norazila Ibrahim.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Ibrahim.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, N., Sazali, M.S., Mohamed, Z. et al. The Effects of Mo Partial Substitution at the Mn Site on Electroresistance Behaviour in La0.7Ba0.3Mn1−xMoxO3 (x = 0, 0.01, 0.02, 0.03, 0.04) Manganites. J. Electron. Mater. 52, 237–250 (2023). https://doi.org/10.1007/s11664-022-09976-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09976-y

Keywords

Navigation