Skip to main content
Log in

Studies on Multiferroic Behavior of Y-Mn Co-Doped Bi0.9La0.1FeO3

  • Topical Collection: Synthesis and Advanced Characterization of Magnetic Oxides
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

To understand the multiferroic behavior of the Y and Mn co-doped Bi0.9La0.1FeO3 system, we have synthesized Bi0.9La0.1FeO3 with the co-doped composition of Bi(0.9−a)YaLa0.1Fe (1−b)MnbO3 (a = 0.05, b = 0.05, 0.10, 0.15, 0.20, and a = 0.10, b = 0.10) using the solid-state reaction method. The role of Y and Mn co-doping on the structural, magnetic, ferroelectric, and dielectric properties were studied by various characterization techniques, such as x-ray diffraction, vibrating sample magnetometer (VSM), polarization–electric field (P–E) loop tracer, and dielectric measurements. X-ray diffraction studies show that a 5% doped sample is single phasic nature and crystallizes in rhombohedral (R3c) symmetry, whereas higher doped samples are dual-phase in nature with minor impurity Bi2Fe4O9 and crystallize in rhombohedral (R3c) and cubic (Pm-3 m) modulation in structural parameters with Y and Mn doping. The modulation in magnetic behavior with Y and Mn doping has been investigated and studied in the context of modification in the different interactions. P–E loop behavior is observed for lower Y (5%) and Mn (5, 10, 15%) doped samples, whereas a lossy/leaky loop is found for higher doped samples (Y-5, 10%, and Mn-20%). Lastly, the real and imaginary parts of dielectric permittivity indicate doping-induced increases in the values of ε′ and ε″.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W. Eerenstein, N.D. Mathur, and J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006). https://doi.org/10.1038/nature05023.

    Article  CAS  Google Scholar 

  2. J. Dho, X. Qi, H. Kim, J.L. MacManus-Driscoll, and M.G. Blamire, Large Electric Polarization and Exchange Bias in Multiferroic BiFeO3. Adv. Mater. 18, 1445–1448 (2002). https://doi.org/10.1002/adma.200502622.

    Article  CAS  Google Scholar 

  3. N.A. Hill and A. Filippetti, Why are There Any Magnetic Ferroelectrics? J. Magn. Magn. Mater. 242–245, 976–979 (2002). https://doi.org/10.1016/S0304-8853(01)01078-2.

    Article  Google Scholar 

  4. U. Nuraini and S. Suasmoro, Crystal Structure and Phase Transformation of BiFeO3 Multiferroics on the Temperature Variation. J. Phys: Conf. Ser. 817, 012059 (2017). https://doi.org/10.1088/1742-6596/817/1/012059.

    Article  CAS  Google Scholar 

  5. A.J. Jacobson and B.E.F. Fender, A Neutron Diffraction Study of the Nuclear and Magnetic Structure of BiFeO3. J. Phys. C: Solid State Phys. 8, 844–850 (1975). https://doi.org/10.1088/0022-3719/8/6/015.

    Article  CAS  Google Scholar 

  6. W. Prellier, M.P. Singh, and P. Murugavel, The Single-Phase Multiferroic Oxides: From Bulk to Thin Film. J. Phys.: Condens. Matter 17, R803–R832 (2005). https://doi.org/10.1088/0953-8984/17/30/R01.

    Article  CAS  Google Scholar 

  7. J. Silva, A. Reyes, H. Esparza, H. Camacho, and L. Fuentes, BiFeO3: A Review on Synthesis, Doping and Crystal Structure. Integr. Ferroelectr. 126, 47–59 (2011). https://doi.org/10.1080/10584587.2011.574986.

    Article  CAS  Google Scholar 

  8. J. Schiemer, R. Withers, L. Noren, L. Yun, L. Bourgeois, and G. Stewart, Detailed Phase Analysis and Crystal Structure Investigation of a Bi1-xCaxFeO3-x/2 Perovskite-Related Solid Solution Phase and Selected Property Measurements Thereof. Chem Mater. 21, 4223–4232 (2009). https://doi.org/10.1021/cm901757h.

    Article  CAS  Google Scholar 

  9. D. Varshney, A. Kumar, and K. Verma, Effect of A Site and B Site Doping on Structural, Thermal and Dielectric Properties of BiFeO3 Ceramics. J Alloys Compd 509, 8421–8426 (2011). https://doi.org/10.1016/j.jallcom.2011.05.106.

    Article  CAS  Google Scholar 

  10. G.L. Yuan, K.Z. Baba-Kishi, J.M. Liu, S.W. Or, Y.P. Wang, and Z.G. Liu, Multiferroic Properties of Single-Phase Bi0.85La0.15FeO3 Lead-Free Ceramics. J. Am. Ceram. Soc. 89, 3136–3139 (2006). https://doi.org/10.1111/j.1551-2916.2006.01186.x.

    Article  CAS  Google Scholar 

  11. H. Wu, Y.B. Lin, J.J. Gong, F. Zhang, M. Zeng, M.H. Qin, Z. Zhang, Q. Ru, Z.W. Liu, X.S. Gao, and J.M. Liu, Significant Enhancements of Dielectric and Magnetic Properties in Bi(Fe1-xMgx)O3–x/2 Induced by Oxygen Vacancies. J. Phys. D: Appl. Phys. 46, 145001 (2013). https://doi.org/10.1088/0022-3727/46/14/145001.

    Article  CAS  Google Scholar 

  12. S.T. Zhang, Y. Zhang, M.H. Lu, C.L. Du, Y.F. Chen, Z.G. Liu, Y.Y. Zhu, N.B. Ming, and X.Q. Pan, Substitution-Induced Phase Transition and Enhanced Multiferroic Properties of Bi1-xLaxFeO3 ceramics. Appl. Phys. Lett. 88, 162901 (2006). https://doi.org/10.1063/1.2195927.

    Article  CAS  Google Scholar 

  13. N. Jeon, D. Rout, I.W. Kim, and S.J.L. Kang, Enhanced Multiferroic Properties of Single-Phase BiFeO3 Bulk Ceramics by Ho Doping. Appl. Phys. Lett. 98, 072901 (2011). https://doi.org/10.1063/1.3552682.

    Article  CAS  Google Scholar 

  14. P. Uniyal and K.L. Yadav, Room Temperature Multiferroic Properties of Eu Doped BiFeO3. J. Appl. Phys. 105, 07D914 (2009). https://doi.org/10.1063/1.3072087.

    Article  CAS  Google Scholar 

  15. G.L. Yuan, S.W. Or, J.M. Liu, and J.M. Liu, Structural Transformation and Ferroelectromagnetic Behavior in Single-Phase Bi1-XNdxFeO3 Multiferroic Ceramics. Appl. Phys. Lett. 89, 052905 (2006). https://doi.org/10.1063/1.2266992.

    Article  CAS  Google Scholar 

  16. Z. Yan, K.F. Wang, J.F. Qu, Y. Wang, Z.T. Song, and S.L. Feng, Processing and Properties of Yb-Doped BiFeO3 Ceramics. Appl. Phys. Lett. 91, 082906 (2007). https://doi.org/10.1063/1.2775034.

    Article  CAS  Google Scholar 

  17. A. Ravalia, M. Vagadia, P.S. Solanki, S. Gautam, K.H. Chae, K. Asokan, N.A. Shah, and D.G. Kuberkar, Role of Defects in BiFeO3 Multiferroic Films and Their Local Electronic Structure by X-Ray Absorption Spectroscopy. J Appl Phys 116, 153701 (2014). https://doi.org/10.1063/1.4898196.

    Article  CAS  Google Scholar 

  18. A. Ablat, E. Muhemmed, C. Si, J. Wang, H. Qian, R. Wu, N. Zhang, R. Wu, and K. Ibrahim, Electronic Structure of BiFe1−xMnxO3 Thin Films Investigated by X-Ray Absorption Spectroscopy. J Nanomater (2012). https://doi.org/10.1155/2012/123438.

    Article  Google Scholar 

  19. H. Liu, Z. Liu, and K. Yao, Improved Electric Properties in BiFeO3 Films by the Doping of Ti. J Sol-Gel Sci Technol 41, 123–128 (2007). https://doi.org/10.1007/s10971-006-0514-x.

    Article  CAS  Google Scholar 

  20. X. Qi, J. Dho, R. Tomov, M.G. Blamire, and J.L. MacManus-Driscoll, Greatly Reduced Leakage Current and Conduction Mechanism in aliovalent-Ion-Doped BiFeO3. Appl. Phys. Lett. 86, 062903 (2005). https://doi.org/10.1063/1.1862336.

    Article  CAS  Google Scholar 

  21. A. Mukherjee, M. Banerjee, S. Basu, P.M.G. Nambissan, and M. Pal, Gadolinium Substitution Induced Defect Restructuring in Multiferroic BiFeO3 Case Study by Positron Annihilation Spectroscopy. J. Phys. D: Appl. Phys. 46, 495309 (2013). https://doi.org/10.1088/0022-3727/46/49/495309.

    Article  CAS  Google Scholar 

  22. A. Mukherjee, S. Basu, G. Chakraborty, and M. Pal, Effect of Y-Doping on the Electrical Transport Properties of Nanocrystalline BiFeO3. J. Appl. Phys. 112, 014321 (2012). https://doi.org/10.1063/1.4734005.

    Article  CAS  Google Scholar 

  23. S.J. Chiu, Y.T. Liu, G.P. Yu, H.Y. Lee, and H.J. Huang, The Structure and Ferroelectric Property of La-doped BiFeO3/SrTiO3 Artificial Superlattice Structure by RF Sputtering: Effect of Deposition Temperature. Thin Solid Films 529, 85–88 (2013). https://doi.org/10.1016/j.tsf.2012.02.033.

    Article  CAS  Google Scholar 

  24. M. Zhong, N.P. Kumar, E. Sagar, Z. Jian, H. Yemin, and P.V. Reddy, Structural Magnetic and Dielectric Properties of Y Doped BiFeO3. Mater. Chem. Phys. 173, 126–131 (2016). https://doi.org/10.1016/j.matchemphys.2016.01.047.

    Article  CAS  Google Scholar 

  25. M.B. Bellakki and V. Manivannan, Citrate-gel Synthesis and Characterization of Yttrium-Doped Multiferroic BiFeO3. J Sol-Gel Sci Technol 53, 184–192 (2010). https://doi.org/10.1007/s10971-009-2076-1.

    Article  CAS  Google Scholar 

  26. V. Srinivas, A.T. Raghavender, and K. Vijaya Kumar, Structural and Magnetic Properties of Mn Doped BiFeO3 Nanomaterials. Phys Resear Int (2016). https://doi.org/10.1155/2016/4835328.

    Article  Google Scholar 

  27. S. Chauhan, M. Kumar, S. Chhoker, S.C. Katyal, H. Singh, M. Jewariya, and K.L. Yadav, Multiferroic, Magnetoelectric and Optical Properties of Mn-Doped BiFeO3 Nanoparticles. Solid State Commun 152, 525–529 (2012). https://doi.org/10.1016/j.ssc.2011.12.037.

    Article  CAS  Google Scholar 

  28. J.Z. Huang, Y. Wang, Y. Lin, M. Li, and C.W. Nan, Effect of Mn Doping on Electric and Magnetic Properties of BiFeO3 Thin Films by Chemical Solution. J Appl Phys 106, 063911 (2009). https://doi.org/10.1063/1.3225559.

    Article  CAS  Google Scholar 

  29. J. Silva, A. Reyes, R. Castaneda, H. Esparza, H. Camacho, J. Matutes, and L. Fuentes, Structure and Electromagnetic Properties of Bi1xYxFe0.95Mn0.05O3 (x=0.05, 0.075, 0.10). Ferroelectrics 426, 103–111 (2012). https://doi.org/10.1080/00150193.2012.671624.

    Article  CAS  Google Scholar 

  30. R. Palkar, D.C. Kundaliya, and S.K. Malik, Effect of Mn Substitution on Magnetoelectric Properties of Bismuth Ferrite System. J. Appl. Phys. 93, 4337 (2003). https://doi.org/10.1063/1.1558992.

    Article  CAS  Google Scholar 

  31. S. Mukherjee, L.A.W. Basu, N.T.K. Green, and M. Thanh, Pal, Enhanced Multiferroic Properties of Y and Mn Codoped Multiferroic BiFeO3 Nanoparticles. J Mater Sci. 50, 1891–1900 (2015). https://doi.org/10.1007/s10853-014-8752-8.

    Article  CAS  Google Scholar 

  32. M. Mukherjee, S. Banerjee, N.T.K. Basu, L.A.W. Thanh, and M. Green, Pal, Enhanced Magnetic and Electrical Properties of Y and Mn co-doped BiFeO3 Nanoparticles. Physica B 448, 199–203 (2014). https://doi.org/10.1016/j.physb.2014.03.082.

    Article  CAS  Google Scholar 

  33. D. Varshney, A. Kumar, and K. Verma, Effect of A Site and B Site Doping on Structural, Thermal and Dielectric Properties of BiFeO3 Ceramics. J. Alloy. Compd. 509, 8421–8426 (2011). https://doi.org/10.1016/j.jallcom.2011.05.106.

    Article  CAS  Google Scholar 

  34. K. Momma and F. Izumi, VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. J. Appl. Crystallogr. 44, 1272–1276 (2011). https://doi.org/10.1107/s0021889811038970.

    Article  CAS  Google Scholar 

  35. P. Trivedi, F. Singh, B. Vyas, H. Kundalia, D.K. Shukla, S. Rayaprol, and D.G. Kuberkar, Stiffening of Phonons with Enhanced Hybridization and Structural Phase Transformation Upon Pr-Doping in BiFeO3. Physica B Phys Condens Matt 571, 247–251 (2019). https://doi.org/10.1016/j.physb.2019.07.021.

    Article  CAS  Google Scholar 

  36. R.A. Young ed., The Rietveld Method. (New York: Oxford University Press), 1993).

    Google Scholar 

  37. RA Agarwal, S Sanghi, AN Ahlawat, and Monica, Phase Transformation, Dielectric and Magnetic Properties of Nb-Doped Bi0.8Sr0.2FeO3 Multiferroics, J. Appl. Phys., 111, 113917 (2012); doi: https://doi.org/10.1063/1.4728981

  38. F. Huang, Z. Wang, Lu. Xiaomei, J. Zhang, K. Min, W. Lin, R. Ti, Xu. TingTing, Ju. He, C. Yue, and J. Zhu, Peculiar Magnetism of BiFeO3 Nanoparticles with Size Approaching the Period of the Spiral Spin Structure. Sci Rep 3, 2907 (2013). https://doi.org/10.1038/srep02907.

    Article  Google Scholar 

  39. D.K. Rana, S.K. Kundu, R.J. Choudhary, and S. Basu, Enhancement of Electrical and Magnetodielectric Properties of BiFeO3 Incorporated PVDF Flexible Nanocomposite Films. Mater Resear Expr 6, 0850d9 (2019). https://doi.org/10.1088/2053-1591/ab26de.

    Article  CAS  Google Scholar 

  40. A. Khomchenko, I.O. Troyanchuk, D.V. Karpinsky, S. Das, V.S. Amaral, M. Tovar, V. Sikolenko, and J.A. Paixão, Structural Transitions and Unusual Magnetic Behaviour in Mn-doped Bi1−xLaxFeO3 Perovskites. J. Appl. Phys. 112, 084102 (2012). https://doi.org/10.1063/1.4759435.

    Article  CAS  Google Scholar 

  41. R.P. Maiti, S. Basu, and D. Chkaravorty, Synthesis of Nanocrystalline YFeO3 and its Magnetic Properties. J. Magn. Magn. Mater. 321, 3274–3277 (2009). https://doi.org/10.1016/j.jmmm.2009.05.061.

    Article  CAS  Google Scholar 

  42. B. Deka, S. Ravi, A. Perumal, and D. Pamu, Effect of Mn Doping on Magnetic and Dielectric Properties of YFeO3. Ceram Int 43, 1323–1334 (2016). https://doi.org/10.1016/j.ceramint.2016.10.087.

    Article  CAS  Google Scholar 

  43. Wu. Jiangtao, N. Li, Xu. Jun, S. Zhou, Y. Jiang, and Z. Xie, Synthesis, Phase Diagram and Magnetic Properties of (1–x)BiFeO3-xLaMnO3 Solid Solution. J. Alloy. Compd. 634, 142–147 (2015). https://doi.org/10.1016/j.jallcom.2015.01.283.

    Article  CAS  Google Scholar 

  44. A. Wrzesinska, A. Khort, M. Witkowski, J. Szczytko, J. Ryl, J. Gurgul, D.S. Kharitonov, K. Łątka, T. Szumiata, and A. Wypych-Puszkarz, Structural, Electrical and Magnetic Study of La-, Eu-, and Er-Doped Bismuth Ferrite Nanomaterials Obtained by Solution Combustion Synthesis. Sci Rep 11, 22746 (2021). https://doi.org/10.1038/s41598-021-01983-z.

    Article  CAS  Google Scholar 

  45. R. Das, T. Sarkar, and K. Mandal, Multiferroic Properties of Ba2+ and Gd3+ Co-Doped Bismuth Ferrite: Magnetic, Ferroelectric and Impedance Spectroscopic Analysis. J. Phys. D: Appl. Phys. 45, 455002 (2012). https://doi.org/10.1088/0022-3727/45/45/455002.

    Article  CAS  Google Scholar 

  46. S.K. Pradhan and B.K. Roul, Effect of Gd Doping on Structural, Electrical and Magnetic Properties of BiFeO3 Electroceramic. J. Phys. Chem. Solids 72, 1180–1187 (2011). https://doi.org/10.1016/j.jpcs.2011.07.017.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Prof. D.G. Kuberkar, Saurashtra University, Rajkot for his guidance and motivation. The authors are thankful to the Department of Physics, Saurashtra University, Rajkot for providing the XRD and P–E loop facility. The authors thank Prof. A. K. Nigam, TIFR, for magnetization measurements. M.V. acknowledges DST, India for the INSPIRE faculty award (DST/INSPIRE/04/2017/003059). ABR is thankful to IUAC New Delhi for UFR-65319 and UGC-DAE, CSR, Indore for CSR-IC-ISUM-64/ CRS-347/2020-21/949 Project funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Ravalia.

Ethics declarations

Conflict of interest

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support or personal relationships that could have appeared to affect the work reported in this paper. We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the authorship order listed in the manuscript has been approved by all of us.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 225 KB)

Supplementary file2 (PDF 225 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jose, P.J., Rathod, U., Savaliya, C. et al. Studies on Multiferroic Behavior of Y-Mn Co-Doped Bi0.9La0.1FeO3. J. Electron. Mater. 51, 6689–6698 (2022). https://doi.org/10.1007/s11664-022-09972-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09972-2

Keywords

Navigation