Skip to main content

Advertisement

Log in

Comparative Study on the Role of Different Precursor Salts on Structural, Morphological, and Optoelectronic Characteristics of CH3NH3PbCl3 Perovskite Semiconductor: An Experimental Study

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In perovskite optoelectronics, the quality of the perovskite material directly impacts the optoelectronic devices' performance. This work highlights an easy chemical method to improve the quality of a methylammonium lead chloride (CH3NH3PbCl3) perovskite semiconductor by altering the source of lead (Pb) precursor salt. Two different Pb precursor salts have been taken here to synthesize the homogeneous, less-defective crystalline grains of CH3NH3PbCl3. The x-ray diffraction peaks, diffuse reflectance (DRS)-ultraviolet (UV) spectra, photoluminescence spectra, and microscopic studies reveal the high crystallinity, higher UV light absorption, prominent radiative recombination, and homogeneous surface of lead acetate (Pb(Ac)2.3H2O) based CH3NH3PbCl3 perovskite semiconductor compared to lead chloride (PbCl2) based CH3NH3PbCl3, respectively. The average crystallite sizes are 52.23 nm and 81.17 nm, average particle sizes are 0.22 ± 0.02 μm and 0.45 ± 0.05 μm, and bandgaps are 3 eV and 2.9 eV for Pb(Ac)2.3H2O and PbCl2 sourced CH3NH3PbCl3, respectively. It is also observed that a change in starting material can cause a change in even Urbach energy. An enhanced Urbach energy of 42.4 meV is witnessed for Pb(Ac)2.3H2O based CH3NH3PbCl3 and it contributes to an increase in the corresponding bandgap of the sample. Additionally, several other structural and optoelectronic characteristics have been analyzed here in this work. The featured results deliver a straightforward approach to improving the quality of the CH3NH3PbCl3 perovskite semiconductor and provide a different angle of view on using the CH3NH3PbCl3 semiconducting perovskite in optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Q. Wang, M. Lyu, M. Zhang, J. Yun, and H. Chen, Cubic Phase of Organohalide Perovskite: The Role of Chlorine in Crystal Formation of CH3NH3PbI3 on TiO2. J. Phys. Chem. Lett. 6, 4379 (2015).

    Article  CAS  Google Scholar 

  2. G. Maculan, A.D. Sheikh, A.L. Abdelhady, M.I. Saidaminov, M.A. Haque, B. Murali, E. Alarousu, O.F. Mohammed, T. Wu, and O.M. Bakr, CH3NH3PbCl3 Single Crystals: Inverse Temperature Crystallization and Visible-Blind UV-Photodetector. J. Phys. Chem. Lett. 6, 3781 (2015).

    Article  CAS  Google Scholar 

  3. Y. Tian, Y. Ling, Y. Shu, C. Zhou, T. Besara, T. Siegrist, H. Gao, and B. Ma, A Solution-Processed Organometal Halide Perovskite Hole Transport Layer for Highly Efficient Organic Light-Emitting Diodes. Adv. Electron. Mater. 2, 1600165 (2016).

    Article  Google Scholar 

  4. M.A.A. Wadi, T.H. Chowdhury, I.M. Bedja, J.J. Lee, N. Amin, M. Aktharuzzaman, and A. Islam, Evolution of Pb-free and Partially Pb-Substituted Perovskite Absorbers for Efficient Perovskite Solar cells. Electron. Mater. Lett. 15, 525 (2019).

    Article  CAS  Google Scholar 

  5. B. Saparov and D.B. Mitzi, Organic-Inorganic Perovskites: Structural Versatility for Functional Materials Design. Chem. Rev. 116, 4558 (2016).

    Article  CAS  Google Scholar 

  6. Y. Liu, Z. Yang, D. Cui, X. Ren, J. Sun, X. Liu, J. Zhang, Q. Wei, H. Fan, F. Yu, X. Zhang, C. Zhao, and S.F. Liu, Two-Inch-Sized Perovskite CH3NH3PbX3 (X= Cl, Br, I) Crystals: Growth and Characterization. Adv. Mater. 27, 5176 (2015).

    Article  CAS  Google Scholar 

  7. W. Travis, E.N.K. Glover, H. Bronstein, D.O. Scanlon, and R.G. Palgrave, On the Applications of the Tolerance Factor to Inorganic and Hybrid Halide Perovskites: a Revised System. Chem. Sci. 7, 4548 (2016).

    Article  CAS  Google Scholar 

  8. Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, and J. Huang, Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement. Adv. Mater. 26, 6503 (2014).

    Article  CAS  Google Scholar 

  9. W. Nie, H. Tsai, R. Asadpour, J.C. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, and H.L. Wang, High-Efficiency Solution-Processed Perovskite Solar Cells with Millimeter-Scale Grains. Science 347, 522 (2015).

    Article  CAS  Google Scholar 

  10. A. Wakamiya, M. Endo, T. Sasamori, N. Tokitoh, Y. Ogomi, S. Hayase, and Y. Murata, Reproducible Fabrication of Efficient Perovskite-Based Solar Cells: X-ray Crystallographic Studies on the Formation of CH3NH3PbI3 layers. Chem. Lett. 43, 711 (2014).

    Article  CAS  Google Scholar 

  11. P. Sarkar, S.K. Tripathy, K.L. Baishnab, and G. Palai, Structural, Optoelectronic, and Morphological study of Indium-Doped Methylammonium Lead Chloride Perovskites. Appl. Phys. A 125, 580 (2019).

    Article  CAS  Google Scholar 

  12. L. Zhou, J. Su, Z. Lin, D. Chen, W. Zhu, C. Zhang, J. Zhang, J. Chang, and Y. Hao, Theoretical and Experimental Investigation of Mixed Pb–In Halide Perovskites. J. Phys. Chem. C 122, 15945 (2018).

    Article  CAS  Google Scholar 

  13. P. Sarkar, A. Srivastava, S.K. Tripathy, K.L. Baishnab, T.R. Lenka, P.S. Menon, F. Lin, and A.G. Aberle, Exploring the Effect of Ga3+ Doping on Structural Electronic and Optical Properties of CH3NH3PbCl3 Perovskites an Experimental Study. J. Mater. Sci.: Mater. Electron. 32, 12841 (2021).

    CAS  Google Scholar 

  14. D.T. Moore, H. Sai, K.W. Tan, D.M. Smilgies, W. Zhang, H.J. Snaith, U. Wiesner, and L.A. Estroff, Crystallization Kinetics of Organic-Inorganic Trihalide Perovskites and the Role of the Lead Anion in Crystal Growth. J. Am. Chem. Soc. 137, 2350 (2015).

    Article  CAS  Google Scholar 

  15. W. Zhang, M. Saliba, D.T. Moore, S.K. Pathak, M.T. Hörantner, T. Stergiopoulos, S.D. Stranks, G.E. Eperon, J.A. Alexander-Webber, A. Abate, and A. Sadhanala, Ultrasmooth Organic-Inorganic Perovskite thin-Film Formation and Crystallization for Efficient Planar Heterojunction Solar Cells. Nat. Comm. 6, 6142 (2015).

    Article  CAS  Google Scholar 

  16. D. Forgács, M. Sessolo, and H.J. Bolink, Lead Acetate Precursor Based Pin Perovskite Solar Cells with Enhanced Reproducibility and Low Hysteresis. J. Mater. Chem. A 3, 14121–14125 (2015).

    Article  Google Scholar 

  17. Q. Zhao, G.R. Li, J. Song, Y. Zhao, Y. Qiang, and X.P. Gao, Improving the Photovoltaic Performance of Perovskite Solar Cells with Acetate. Sci. Rep. 6, 38670 (2016).

    Article  CAS  Google Scholar 

  18. V. Adinolfi, O. Ouellette, M.I. Saidaminov, G. Walters, A.L. Abdelhady, O.M. Bakr, and E.H. Sargent, Fast and Sensitive Solution-Processed Visible-Blind Perovskite UV Photodetectors. Adv. Mater. 28, 7264 (2016).

    Article  CAS  Google Scholar 

  19. H. Mashiyama, Y. Kurihara, and T. Azetsu, Disordered Cubic Perovskite Structure of CH3NH3PbX3 (X= Cl, Br, I). J. Kor. Phys. Soc. 32, S156 (1998).

    CAS  Google Scholar 

  20. P. Bindu and S. Thomas, Estimation of Lattice Strain in ZnO Nanoparticles: x-ray Peak Profile Analysis. J. Theor. Appl. Phys. 8, 123 (2014).

    Article  Google Scholar 

  21. E. Zheng, B. Yuh, G.A. Tosado, and Q. Yu, Solution-Processed Visible-Blind UV-A Photodetectors Based on CH3NH3PbCl3 Perovskite Thin Films. J. Mater. Chem. C 5, 3796 (2017).

    Article  CAS  Google Scholar 

  22. J. Qing, H.T. Chandran, H.T. Xue, Z.Q. Guan, T.L. Liu, S.W. Tsang, M.F. Lo, and C.S. Lee, Simple Fabrication of Perovskite Solar Cells Using Lead Acetate as Lead Source at Low Temperature. Org. Electron. 27, 12 (2015).

    Article  CAS  Google Scholar 

  23. P. Sarkar, A. Srivastava, S.K. Tripathy, K.L. Baishnab, T.R. Lenka, P.S. Menon, F. Lin, and A.G. Aberle, Impact of Sn Doping on Methylammonium Lead Chloride perovskite: an Experimental Study. J. Appl. Phys. 127, 125110 (2020).

    Article  CAS  Google Scholar 

  24. A.E. Morales, E.S. Mora, and U. Pal, Rev. Mex. Fis. 53, 18 (2007).

    CAS  Google Scholar 

  25. J. Tauc, R. Grigorovici, and A. Vancu, Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Status Solidi B 15, 627 (1966).

    Article  CAS  Google Scholar 

  26. Y. Mingmongkol, D.T.T. Trinh, P. Phuinthiang, D. Channei, K. Ratananikom, A. Nakaruk, and W. Khanitchaidecha, Enhanced Photocatalytic and Photokilling Activities of Cu-Doped TiO2 Nanoparticles. Nanomater. 12, 1198 (2022).

    Article  CAS  Google Scholar 

  27. O. Rejaiba, K. Khirouni, M.H. Dhaou, B. Alzahrani, M.L. Bouazizi, and J. Khelifi, Investigation Study of Optical and Dielectric Parameters Using Absorption and Diffuse Reflectance Spectroscopy Method on La0.57Nd0.1Sr0.13Ag0.2MnO3 Perovskite for Optoelectronic Application. Opt. Quant. Electron. 54, 315 (2022).

    Article  CAS  Google Scholar 

  28. P. Sarkar, S.K. Tripathy, and K.L. Baishnab, Polyvinylpyrrolidone Capped Electrospun CH3NH3PbCl3 Perovskite Film as the Electron Transport Layer in Perovskite Solar Cell Application. Sol. Energy 230, 390 (2021).

    Article  CAS  Google Scholar 

  29. M. Nagaraja, P. Raghu, and H.M. Mahesh, and Jayadev Pattar, Structural, Optical and Urbach Energy Properties of ITO/CdS and ITO/ZnO/CdS bi-Layer Thin Films. J Mater Sci: Mater Electron 32, 8976 (2021).

    CAS  Google Scholar 

  30. B. Subedi, C. Li, C. Chen, D. Liu, M.M. Junda, Z. Song, Y. Yan, and N.J. Podraza, Urbach Energy and Open-Circuit Voltage Deficit for Mixed Anion-Cation Perovskite Solar Cells. ACS Appl. Mater. Interfaces 14, 7796 (2022).

    Article  CAS  Google Scholar 

  31. A. Sadhanala, S. Ahmad, B. Zhao, N. Giesbrecht, P.M. Pearce, F. Deschler, R.L. Hoye, K.C. Gödel, T. Bein, P. Docampo, and S.E. Dutton, Blue-Green Color Tunable Solution Processable Organolead Chloride-Bromide Mixed Halide Perovskites For Optoelectronic Applications. Nano Lett. 15, 6095 (2015).

    Article  CAS  Google Scholar 

  32. T. Yamada, T. Aharen, and Y. Kanemitsu, Near-Band-Edge Optical Responses of CH3NH3PbCl3 Single Crystals: Photon Recycling of Excitonic Luminescence. Phys. Rev. Lett. 120, 057404 (2018).

    Article  CAS  Google Scholar 

  33. N.D. Pham, V.T. Tiong, P. Chen, L. Wang, G.J. Wilson, J. Bell, and H. Wang, Enhanced Perovskite Electronic Properties via a Modified Lead(ii) Chloride Lewis Acid-Base Adduct and Their Effect in High-Efficiency Perovskite Solar Cells. J. Mater. Chem. A 5, 5195 (2017).

    Article  CAS  Google Scholar 

  34. J. Qing, H.T. Chandran, Y.H. Cheng, X.K. Liu, H.W. Li, S.W. Tsang, M.F. Lo, and C.S. Lee, Chlorine Incorporation for Enhanced Performance of Planar Perovskite Solar Cell Based on Lead Acetate Precursor. ACS Appl. Mater. Interfaces 7, 23110 (2015).

    Article  CAS  Google Scholar 

  35. Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fujikawa, Q. Shen, T. Toyoda, K. Yoshino, S.S. Pandey, T. Ma, and S. Hayase, CH3NH3SnxPb(1–x)I3 Perovskite Solar Cells Covering up to 1060nm. J. Phys. Chem. Lett. 5, 1004 (2014).

    Article  CAS  Google Scholar 

  36. S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, and H.J. Snaith, Electron-Hole Diffusion Lengths Exceeding 1 Micrometer In An Organometal Trihalide Perovskite Absorber. Science 342, 341 (2013).

    Article  CAS  Google Scholar 

  37. G.E. Eperon, V.M. Burlakov, P. Docampo, A. Goriely, and H.J. Snaith, Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells. Adv. Func. Mater. 24, 151 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank SERB, New Delhi, Government of India for funding under Early Career Research (ECR) scheme (File no. ECR/2016/001404). We extend our heartfelt thanks to Prof. Sivaji Bandyopadhyay, Director, National Institute of Technology, Silchar for his support and financial assistance received from TEQIP-III program for our research work. The authors would also like express the heartfelt gratitude to SAIF IIT Bombay; CIF, NIT Silchar; Department of chemistry and physics, NIT Silchar for providing the required characterization facilities to smoothly conduct the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paramita Sarkar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, P., Niranjan, N.K., Srivastava, A. et al. Comparative Study on the Role of Different Precursor Salts on Structural, Morphological, and Optoelectronic Characteristics of CH3NH3PbCl3 Perovskite Semiconductor: An Experimental Study. J. Electron. Mater. 51, 7105–7112 (2022). https://doi.org/10.1007/s11664-022-09946-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09946-4

Keywords

Navigation