Skip to main content
Log in

Effect of Ionic Liquid Methylammonium Acetate on the Performance of Hole-Transport Material-Free Mesoporous Perovskite Solar Cells with Carbon Electrode

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

One effective way of improving the performance of perovskite solar cells (PSCs) is using ionic liquids to control the crystal growth of the perovskite. In this work, the effect of the ionic liquid methylammonium acetate (MAAc) on the perovskite crystal growth and the power conversion efficiency (PCE) of hole-transport material-free PSCs with carbon electrodes were observed. We found that, when perovskite was produced from a reaction of dimethylammonium lead iodide (DMAPbI3) with methylamine, the addition of ionic liquid to the DMAPbI3 precursor solution causes the crystallitic size of the resulting perovskite to increase, improving the crystallinity and light absorbability of the perovskite film. The PCE of the device fabricated by adding 5% MAAc to the DMAPbI3 precursor solution was 14.82%, which was 1.26-fold improved as compared to the control (11.74%). The result of our analysis showed that the PCE of the device was increased by the addition of ionic liquid, due to reduction of the nonradiative recombination and enlargement of the charge recombination resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Organometal Halide Perovskites as Visible Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 131, 6050 (2009).

    Article  CAS  Google Scholar 

  2. M. Liu, M.B. Johnston, and H.J. Snaith, Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition. Nature 501, 395 (2013).

    Article  CAS  Google Scholar 

  3. L.F. Liu, A. Mei, T.F. Liu, P. Jiang, Y.S. Sheng, L.J. Zhang, and H.W. Han, Fully Printable Mesoscopic Perovskite Solar Cells with Organic Silane Self-Assembled Monolayer. J. Am. Chem. Soc. 137, 1790 (2015).

    Article  CAS  Google Scholar 

  4. A. Mei, X. Li, L.F. Liu, Z.L. Ku, T.F. Liu, Y.G. Rong, M. Xu, M. Hu, J.Z. Chen, Y. Yang, M. Gratzel, and H.W. Han, A Hole-Conductor–Free, Fully Printable Mesoscopic Perovskite Solar Cell with High Stability. Science 345, 295 (2014).

    Article  CAS  Google Scholar 

  5. J.Z. Chen, Y.G. Rong, A. Mei, Y.L. Xiong, T.F. Liu, Y.S. Sheng, P. Jiang, L. Hong, Y.J. Guan, X.T. Zhu, X.M. Hou, M. Duan, J.Q. Zhao, X. Li, and H.W. Han, Hole-Conductor-Free Fully Printable Mesoscopic Solar Cell with Mixed-Anion Perovskite CH3NH3PbI(3–x)(BF4)x. Adv. Energy Mater. 6, 1502009 (2016).

    Article  Google Scholar 

  6. A. Ummadisingu, L. Steier, J.Y. Seo, T. Aisuke Matsui, A. Abate, W. Tress, and M. Grätzel, The Effect of Illumination on the Formation of Metal Halide Perovskite Films. Nature 545, 208 (2017).

    Article  CAS  Google Scholar 

  7. National Renewable Energy Laboratory, Best Research Cell Efficiency Chart (2021); www.nrel.gov/pv/cell efficiency.html. Accessed: December 2021.

  8. W. Chen, Y.C. Zhou, G.C. Chen, Y.H. Wu, B. Tu, F.Z. Liu, L. Huang, A.M. Ching Ng, A.B. Djurisic, and Z.B. He, Alkali Chlorides for the Suppression of the Interfacial Recombination in Inverted Planar Perovskite Solar Cells. Adv. Energy Mater. (2019). https://doi.org/10.1002/aenm.201803872.

    Article  Google Scholar 

  9. R.X. Zhang, M.H. Li, Y.H. Huan, J.H. Xi, S.C. Zhang, X.Q. Cheng, H.L. Wu, W.C. Peng, Z.M. Bai, and X.Q. Yan, A Potassium Thiocyanate Additive for Hysteresis Elimination in Highly Efficient Perovskite Solarcells. Inorg. Chem. Front. 6, 434 (2019).

    Article  CAS  Google Scholar 

  10. W.J. Ke, C.C. Stoumpos, and M.G. Kanatzidis, “Unleaded” Perovskites: Status Quo and Future Prospects of Tin-Based Perovskite Solar Cells. Adv. Mater. (2018). https://doi.org/10.1002/adma.201803230.

    Article  Google Scholar 

  11. A. Rajagopal, K. Yao, and A.K.Y. Jen, Toward Perovskite Solar Cell Commercialization: A Perspective and Research Roadmap Based on Interfacial Engineering. Adv. Mater. 30, 1800455 (2018).

    Article  Google Scholar 

  12. M. Saliba, J.P. Correa-Baena, M. Gratzel, and A. Hagfeldt, Perovskite Solar Cells: From the Atomic Level to Film Quality and Device Performance. Angew. Chem. Int. Ed. 57, 2554 (2018).

    Article  CAS  Google Scholar 

  13. Q.X. Fu, X.L. Tang, B. Huang, T. Hu, L.C. Tan, L. Chen, and Y.W. Chen, Recent Progress on the Long-Term Stability of Perovskite Solar Cells. Adv. Sci. 5, 1700387 (2018).

    Article  Google Scholar 

  14. Y.G. Tu, X.Y. Yang, R. Su, D.Y. Luo, Y. Cao, L.C. Zhao, T.H. Liu, W.Q. Yang, Y.F. Zhang, Z.J. Xu, Q.Z. Liu, J.H. Wu, Q.H. Gong, F.Y. Mo, and R. Zhu, Diboron-Assisted Interfacial Defect Control Strategy for Highly Efficient Planar Perovskite Solar Cells. Adv. Mater. 30, 1805085 (2018).

    Article  Google Scholar 

  15. M. Abdi-Jalebi, M. Pazoki, B. Philippe, M.I. Dar, M. Alsari, A. Sadhanala, G. Divitini, R. Imani, S. Lilliu, J. Kullgren, H.K. Rensmo, M. Gratzel, and R.H. Friend, Dedoping of Lead Halide Perovskites Incorporating Monovalent Cations. ACS Nano 12, 7301 (2018).

    Article  CAS  Google Scholar 

  16. Z.L. Guo, L.G. Gao, Z.H. Xu, S.H. Teo, C. Zhang, Y. Kamata, S. Hayase, and T.L. Ma, High Electrical Conductivity 2D MXene Serves as Additive of Perovskite for Efficient Solar Cells. Small 14, 1802738 (2018).

    Article  Google Scholar 

  17. F. Yang, M.A. Kamarudin, G. Kapil, D. Hirotani, P. Zhang, C.H. Ng, T.L. Ma, and S. Hayase, Magnesium-Doped MAPbI3 Perovskite Layers for Enhanced Photovoltaic Performance in Humid Air Atmosphere. ACS Appl. Mater. Interfaces 10, 24543 (2018).

    Article  CAS  Google Scholar 

  18. G.S. Fu, L.X. Houa, Y.L. Wang, X.H. Liu, J. Wang, H. Li, Y.C. Cui, D.C. Liu, X.W. Li, and S.P. Yang, Efficiency Enhancement in Planar CH3NH3PbI3−xClx Perovskite Solar Cells by Processing with Bidentate Halogenated Additives. Sol. Energy Mater. Sol. Cells 165, 36 (2017).

    Article  CAS  Google Scholar 

  19. C. Li, Q. Guo, Z. Wang, Y. Bai, L. Liu, F. Wang, E. Zhou, T. Hayat, A. Alsaedi, and Z. Tan, Efficient Planar Structured Perovskite Solar Cells with Enhanced Open-Circuit Voltage and Suppressed Charge Recombination Based on a Slow Grown Perovskite Layer from Lead Acetate Precursor. ACS Appl. Mater. Interfaces 9, 41937 (2017).

    Article  CAS  Google Scholar 

  20. R. Fu, Y. Zhao, W. Zhou, Q. Li, Y. Zhao, and Q. Zhao, Ultrahigh Open-Circuit Voltage for High Performance Mixed-Cation Perovskite Solar Cells Using ACETATE anions. J. Mater. Chem. A 6, 14387 (2018).

    Article  CAS  Google Scholar 

  21. S. Venkatesan, F. Hao, Y. Rong, Z. Zhu, Y. Liang, J. Bao, and Y. Yao, Moisture-Driven Phase Transition for Improved Perovskite Solar Cells with Reduced Trap-State Density. Nano Res. 10, 1413 (2017).

    Article  CAS  Google Scholar 

  22. Y. Xiao, L. Yang, G. Han, Y. Li, M. Li, and H. Li, Effects of Methylammonium Acetate on the Perovskitefilm Quality for the Perovskite Solar Cell. Org. Electron. 65, 201 (2019).

    Article  CAS  Google Scholar 

  23. Y. Wu, F. Xie, H. Chen, X. Yang, H. Su, M. Cai, Z. Zhou, T. Noda, and L. Han, Thermally Stable MAPbI3 Perovskite Solar Cells with Efficiency of 19.19% and Area Over 1 cm2 Achieved by Additive Engineering. Adv. Mater. 29, 701073 (2017).

    Article  Google Scholar 

  24. Y. Chen, A. Yerramilli, Y. Shen, Z. Zhao, and T. Alford, Effect of Excessive Pb Content in the Precursor Solutions on the Properties of the Lead Acetate Derived CH3NH3PbI3 Perovskite Solar Cells. Sol. Energy Mater. Sol. Cells 174, 478 (2018).

    Article  CAS  Google Scholar 

  25. X. Yan, S. Hu, Y. Zhang, H. Li, and C. Sheng, Methylammonium Acetate as an Additive to Improve Performance and Eliminate J-V Hysteresis in 2D Homologous Organic–Inorganic Perovskite Solar Cells. Sol. Energy Mater. Sol. Cells 191, 283 (2019).

    Article  CAS  Google Scholar 

  26. L. Chao, Y. Xia, B. Li, G. Xing, Y. Chen, and W. Huang, Room-Temperature Molten Salt for Facile Fabrication of Efficient and Stable Perovskite Solar Cells in Ambient Air. Chem 5, 995 (2019).

    Article  CAS  Google Scholar 

  27. S. Ghosh, and T. Singh, Role of Ionic Liquids in Organic–Inorganic Metal Halide Perovskite Solar Cells Efficiency and Stability. Nano Energy 63, 103828 (2019). https://doi.org/10.1016/j.nanoen.2019.06.024.

    Article  CAS  Google Scholar 

  28. A. Wang, X. Deng, J. Wang, S. Wang, X. Niu, F. Hao, and L. Ding, Ionic Liquid Reducing Energy Loss and Stabilizing CsPbI2Br Solar Cells. Nano Energy 81, 105631 (2021).

    Article  CAS  Google Scholar 

  29. C. Chen, Z. Song, C. Xiao, R.A. Awni, C. Yao, N. Shrestha, C. Li, S.S. Bista, Y. Zhang, and L. Chen, Arylammonium-Assisted Reduction of the Open-Circuit Voltage Deficit in Wide-Bandgap Perovskite Solar Cells: The Role of Suppressed ion Migration. ACS Energy Lett. 5, 2560 (2020).

    Article  CAS  Google Scholar 

  30. H. Shu, J. Xia, H. Yang, J. Luo, Z. Wan, H.A. Malik, F. Han, X. Yao, and C. Jia, Self-Assembled Hydrophobic Molecule-Based Surface Modification: A Strategy to Improve Efficiency and Stability of Perovskite Solar Cells. ACS Sustain. Chem. Eng. 8, 10859 (2020).

    CAS  Google Scholar 

  31. R. Xia, X. Gao, Y. Zhang, N. Drigo, V.I.E. Queloz, F.F. Tirani, R. Scopelliti, Z. Huang, X. Fang, and S. Kinge, An Efficient Approach to Fabricate Air-Stable Perovskite Solar Cells Via Addition of a Self-Polymerizing Ionic Liquid. Adv. Mater. 32, 2003801 (2020).

    Article  CAS  Google Scholar 

  32. X. Wu, L. Zhang, Z. Xu, S. Olthof, X. Ren, Y. Liu, D. Yang, F. Gao, and S. Liu, Efficient Perovskite Solar Cells Via Surface Passivation by a Multifunctional Small Organic Ionic ComPOUND. J. MATER. CHEM. A MATER. ENERGY SUSTAIN. 8, 8313 (2020).

    Article  CAS  Google Scholar 

  33. S. WANG, Z. LI, Y. ZHANG, X. LIU, J. HAN, X. LI, Z. LIU, S. LIU, and W.C.H. CHOY, Water-Soluble Triazolium Ionic-Liquid-Induced Surface Self-Assembly to Enhance the Stability and Efficiency of Perovskite Solar Cells. Adv. Funct. Mater. 29, 1900417 (2019).

    Article  Google Scholar 

  34. S. Bai, P. Da, C. Li, Z. Wang, Z. Yuan, F. Fu, M. Kawecki, X. Liu, N. Sakai, J.T.W. Wang, S. Huettner, S. Buecheler, M. Fahlman, F. Gao, and H.J. Snaith, Planar Perovskite Solar Cells with Long-Term Stability Using Ionic Liquid Additives. Nature 571, 245 (2019).

    Article  CAS  Google Scholar 

  35. C. Luo, G. Li, L. Chen, J. Dong, M. Yu, C. Xu, Y. Yao, M. Wang, Q. Song, and S. Zhang, Passivation of Defects in Inverted Perovskite Solar Cells Using an Imidazolium-Based Ionic Liquid. Sustain. Energy Fuels. 4, 3971 (2020).

    Article  CAS  Google Scholar 

  36. E.A. Alharbi, A. Krishna, T.P. Baumeler, M. Dankl, G.C. Fish, F. Eickemeyer, O. Ouellette, P. Ahlawat, V. Škorjanc, E. John, B. Yang, L. Pfeifer, C.E. Avalos, L. Pan, M. Mensi, P.A. Schouwink, J.E. Moser, A. Hagfeldt, U. Rothlisberger, and M. Grätzel, Methylammonium Triiodide for Defect Engineering of High-Efficiency Perovskite Solar Cells. ACS Energy Lett. 6, 3650 (2021).

    Article  CAS  Google Scholar 

  37. B. Kim, K.I. Ryu, S.G. Ko, K.S. Sonu, J.H. Ri, H.S. So, C.I. So, Y.S. Kim, and C.J. Yu, Performance Improvement of Hole-Transport Material-Free Mesoporous Perovskite Solar Cells with Carbon Electrodes Using a Solid−Gas Reaction. ACS Appl. Energy Mater. 4, 6606 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the state project of DPR Korea ‘‘Development of the Perovskite Solar Cell’’ (No. 2018-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pyol Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jong, YH., Kim, P., Ryu, KI. et al. Effect of Ionic Liquid Methylammonium Acetate on the Performance of Hole-Transport Material-Free Mesoporous Perovskite Solar Cells with Carbon Electrode. J. Electron. Mater. 51, 7085–7091 (2022). https://doi.org/10.1007/s11664-022-09944-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09944-6

Keywords

Navigation