Skip to main content
Log in

Electronic Structure and Magnetocaloric Effect of Sr-Doped SmCoO3 Perovskites

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We present a study on the magnetic and magnetocaloric characters of Sm1-xSrxCoO3 (x = 0.4–0.6) synthesized by solid-state reactions. Recorded M(T) data at H = 100 Oe show an increase of the Curie temperature (TC) from 143 K for x = 0.4 to 153 K for x = 0.5, but a higher x value (x = 0.6) reduces TC to ~ 92 K. A singularity region sandwiched between the Griffiths and pure paramagnetic phases has been observed in x = 0.4, but it becomes invisible at x = 0.5 and 0.6. These properties are assigned to a competition between ferromagnetic and anti-ferromagnetic interactions induced by Co3+ and Co4+ ions. The Co3+/Co4+ mixed valence has been confirmed upon the analysis of Co K-edge x-ray absorption spectra. Using Maxwell’s relations and M(H) data, we have calculated the absolute magnetic entropy change (|∆Sm|). Around TC, the maximum magnetic entropy changes (|∆Smax|) of x = 0.4, 0.5 and 0.6 are about 1.19, 1.22 and 0.81 J/kg K for H = 50 kOe, respectively. The values of the relative cooling power are in the range of 58 ~ 93 J/kg. Our analyses also indicate all |∆Sm (T, H)| data obeying the universal master curve as constructing the |∆Sm|/|∆Smax| vs. θ plots, where θ is defined as the reduced temperature. When considering exponential parameters N(T, H) and n associated with |∆Sm(T, H)| and |∆Smax(H)|, respectively, we have found their values are different from the mean-field theory value n = 2/3. These results prove the Sm1-xSrxCoO3 samples have the second-order nature and short-range magnetic order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.K. Sahu, S. Tanasescu, B. Scherrer, C. Marinescu, and A. Navrotsky, Energetics of Lanthanide Cobalt Perovskites: LnCoO3−δ (Ln = La, Nd, Sm, Gd). J. Mater. Chem. A 3, 19490 (2015).

    Article  CAS  Google Scholar 

  2. J. Simböck, M. Ghiasi, S. Schönebaum, U. Simon, F.M.F. de Groot, and R. Palkovits, Electronic Parameters in Cobalt-Based Perovskite-Type Oxides as Descriptors for Chemocatalytic Reactions. Nat. Commun. 11, 652 (2020).

    Article  Google Scholar 

  3. S. Singh, and S.K. Pandey, Understanding the Thermoelectric Properties of LaCoO3 Compound. Philos. Mag. 97, 451 (2017).

    Article  CAS  Google Scholar 

  4. J. He, W. Zhou, J. Sunarso, X. Xu, Y. Zhong, Z. Shao, X. Chen, and H. Zhu, 3D Ordered Macroporous SmCoO3 Perovskite for Highly Active and Selective Hydrogen Peroxide Detection. Electrochim. Acta 260, 372 (2018).

    Article  CAS  Google Scholar 

  5. J.B. Goodenough, Localized to Itinerant Electronic Transition in Perovskite Oxides (Berlin, Heidelberg: Springer, 2001).

    Book  Google Scholar 

  6. S.K. Pandey, S. Khalid, N.P. Lalla, and A.V. Pimpale, Local Distortion in LaCoO3 and PrCoO3: Extended x-Ray Absorption Fine Structure, X-ray Diffraction and X-ray Absorption near Edge Structure Studies. J. Phys. Condens. Matter 18, 10617 (2006).

    Article  CAS  Google Scholar 

  7. A. Harada, T. Taniyama, Y. Takeuchi, T. Sato, T. Kyômen, and M. Itoh, Ferromagnetism at the Surface of a LaCoO3 Single Crystal Observed Using Scanning SQUID Microscopy. Phys. Rev. B 75, 184426 (2007).

    Article  Google Scholar 

  8. M. Itoh, J. Hashimoto, S. Yamaguchi, and Y. Tokura, Spin State and Metal-Insulator Transition in LaCoO3 and RCoO3 (R = Nd, Sm and Eu). Phys. B 281–282, 510 (2000).

    Article  Google Scholar 

  9. C. Zobel, M. Kriener, D. Bruns, J. Baier, M. Grüninger, T. Lorenz, P. Reutler, and A. Revcolevschi, Evidence for a Low-Spin to Intermediate-Spin State Transition in LaCoO3. Phys. Rev. B 66, 020402 (2002).

    Article  Google Scholar 

  10. D. Phelan, J. Yu, and D. Louca, Jahn-Teller Spin Polarons in Perovskite Cobaltites. Phys. Rev. B 78, 094108 (2008).

    Article  Google Scholar 

  11. A.M. Durand, D.P. Belanger, C.H. Booth, F. Ye, S. Chi, J.A. Fernandez-Baca, and M. Bhat, Magnetism and Phase Transitions in LaCoO3. J. Phys. Condens. Matter 25, 382203 (2013).

    Article  CAS  Google Scholar 

  12. E. Olsson, X. Aparicio-Anglès, and N.H. de Leeuw, A DFT+U Study of the Structural, Electronic, Magnetic, and Mechanical Properties of Cubic and Orthorhombic SmCoO3. J. Chem. Phys. 145, 224704 (2016).

    Article  Google Scholar 

  13. A. Ikeda, T. Nomura, Y.H. Matsuda, A. Matsuo, K. Kindo, and K. Sato, Spin State Ordering of Strongly Correlating LaCoO3 Induced at Ultrahigh Magnetic Fields. Phys. Rev. B 93, 220401 (2016).

    Article  Google Scholar 

  14. D.P. Kozlenko, N.O. Golosova, Z. Jirák, L.S. Dubrovinsky, B.N. Savenko, M.G. Tucker, Y. Le Godec, and V.P. Glazkov, Temperature- and Pressure-Driven Spin-State Transitions in LaCoO3. Phys. Rev. B 75, 064422 (2007).

    Article  Google Scholar 

  15. W.S. Choi, J.H. Kwon, H. Jeen, J.E. Hamann-Borrero, A. Radi, S. MacKe, R. Sutarto, F. He, G.A. Sawatzky, V. Hinkov, M. Kim, and H.N. Lee, Strain-Induced Spin States in Atomically Ordered Cobaltites. Nano Lett. 12, 4966 (2012).

    Article  CAS  Google Scholar 

  16. Y. Tong, Y. Guo, P. Chen, H. Liu, M. Zhang, L. Zhang, W. Yan, W. Chu, C. Wu, and Y. Xie, Spin-State Regulation of Perovskite Cobaltite to Realize Enhanced Oxygen Evolution Activity. Chem 3, 812 (2017).

    Article  CAS  Google Scholar 

  17. S. Zhou, X. Miao, X. Zhao, C. Ma, Y. Qiu, Z. Hu, J. Zhao, L. Shi, and J. Zeng, Engineering Electrocatalytic Activity in Nanosized Perovskite Cobaltite through Surface Spin-State Transition. Nat. Commun. 7, 11510 (2016).

    Article  CAS  Google Scholar 

  18. P.S.H. Kim, B.A.I. Ali, and B.G. Kim. Electrical and Magnetic Properties of Sm1-xSrxCoO3. J. Korean Phys. Soc. 49, S657∼S661 (2006).

  19. S. Chaudhary, V. Sunil Kumar, S. Roy, P. Chaddah, S. Krishnakumar, V. Sathe, A. Kumar, and D. . Sarma, Magnetocaloric Effect in La1-xSrxCoO3 (0.05 ⩽ x ⩽ 0.40). J. Magn. Magn. Mater. 202, 47 (1999).

  20. Masayuki Itoh, Ikuomi Natori, Satoshi Kubota, and Kiyoichiro Motoya, Spin-Glass Behavior and Magnetic Phase Diagram of La1-xSrxCoO3 (0 ≤ x ≤ 0.5) Studied by Magnetization Measurements. Journal of the Physical Society of Japan 63, 1486–1493 (1994). https://doi.org/10.1143/JPSJ.63.1486.

    Article  CAS  Google Scholar 

  21. H. Tu, Ln1-xSrxCoO3(Ln = Sm, Dy) for the Electrode of Solid Oxide Fuel Cells. Solid State Ionics 100, 283 (1997).

    Article  CAS  Google Scholar 

  22. M. A. Señarı́s-Rodrı́guez and J. B. Goodenough, Magnetic and Transport Properties of the System La1-xSrxCoO3-δ (0 < x ≤ 0.50). J. Solid State Chem. 118, 323 (1995).

  23. A.P. Sazonov, I.O. Troyanchuk, H. Gamari-Seale, V.V. Sikolenko, K.L. Stefanopoulos, G.K. Nicolaides, and Y.K. Atanassova, Neutron Diffraction Study and Magnetic Properties of La1-xBaxCoO3 (x = 0.2 and 0.3). J. Phys.: Condensed Matter 21, 156004 (2009). https://doi.org/10.1088/0953-8984/21/15/156004.

    Article  CAS  Google Scholar 

  24. T.A.O.A. Ho, T.D. Thanh, T.A.O.A. Ho, Q.T. Tran, T.L. Phan, and S.C. Yu, Critical Behavior and Magnetocaloric Effect of Pr1-xSrxCoO3. IEEE Trans. Magn. 50, 1 (2014).

    Google Scholar 

  25. S. Kimura, Y. Maeda, T. Kashiwagi, H. Yamaguchi, M. Hagiwara, S. Yoshida, I. Terasaki, and K. Kindo, Field-Induced Spin-State Transition in the Perovskite Cobalt Oxide Sr1-xYxCoO3-δ. Phys. Rev. B 78, 180403 (2008).

    Article  Google Scholar 

  26. R. Mahendiran, A.K. Raychaudhuri, A. Chainani, and D.D. Sarma, The Large Magnetoresistance of La1-xSrxCoO3 at Low Temperatures. J. Phys. Condens. Matter 7, L561 (1995).

    Article  CAS  Google Scholar 

  27. N. Van Khiem, N. X. Phuc, T.-L. Phan, S.-C. Yu, and M.-H. Phan, Spin Dynamics and Magnetic Frustration Effects in La1-xSrxCoO3 (0 < x ⩽ 0.5) Compounds. J. Appl. Phys. 97, 10A509 (2005).

  28. S.M. Zhou, Y. Li, Y.Q. Guo, J.Y. Zhao, X. Cai, and L. Shi, Observation of a Griffiths-like Phase in Ca-Doped Cobaltites. J. Appl. Phys. 114, 163903 (2013).

    Article  Google Scholar 

  29. P.T. Long, T.V. Manh, T.A. Ho, V. Dongquoc, P. Zhang, and S.C. Yu, Magnetocaloric Effect in La1-xSrxCoO3 Undergoing a Second-Order Phase Transition. Ceram. Int. 44, 15542 (2018).

    Article  CAS  Google Scholar 

  30. P. Mandal, P. Choudhury, S.K. Biswas, and B. Ghosh, Transport and Magnetic Properties of La1-xBaxCoO3. Phys. Rev. B 70, 104407 (2004).

    Article  Google Scholar 

  31. K. Muta, Y. Kobayashi, and K. Asai, Magnetic, Electronic Transport, and Calorimetric Investigations of La1-xCaxCoO3 in Comparison with La1-xSrxCoO3. J. Phys. Soc. Japan 71, 2784 (2002).

    Article  CAS  Google Scholar 

  32. T.A. Ho, P.T. Long, N.V. Quang, S.L. Cho, and S.C. Yu, Short and Long Range Ordering in La1-xCaxCoO3 Cobaltites. J. Magn. Magn. Mater. 477, 396 (2019).

    Article  CAS  Google Scholar 

  33. P.T. Long, D.N. Petrov, J. Ćwik, N.T. Dang, and V. Dongquoc, Short-Range Magnetic Order in La1-xBaxCoO3 Cobaltites. Curr. Appl. Phys. 18, 1248 (2018).

    Article  Google Scholar 

  34. X. G. Luo, H. Li, X. H. Chen, Y. M. Xiong, G. Wu, G. Y. Wang, C. H. Wang, W. J. Miao, and X. Li, Magnetic and Transport Properties in Gd1-xSrxCoO3-δ ( x = 0.10−0.70). Chem. Mater. 18, 1029.

  35. D.D. Stauffer, and C. Leighton, Magnetic Phase Behavior of the Ferrimagnetic Doped Cobaltite Nd1-xSrxCoO3. Phys. Rev. B 70, 1 (2004).

    Article  Google Scholar 

  36. A. Modi, M. Ahmad Bhat, S. Bhattacharya, G.S. Okram, and N.K. Gaur, Magnetic and Transport Properties Driven by Sr Substitution in Polycrystalline Pr1-xSrxCoO3 (01 ≤ x ≤ 05) Cobaltites. J. Appl. Phys. 123, 205114 (2018).

    Article  Google Scholar 

  37. R. Li, P. Kumar, and R. Mahendiran, Critical Behavior in Polycrystalline La0.7Sr0.3CoO3 from Bulk Magnetization Study. J. Alloys Compd. 659, 203 (2016).

    Article  CAS  Google Scholar 

  38. F. Saadaoui, R. M’nassri, H. Omrani, M. Koubaa, N. C. Boudjada, and A. Cheikhrouhou, Critical Behavior and Magnetocaloric Study in La0.6Sr0.4CoO3 Cobaltite Prepared by a Sol–Gel Process. RSC Adv. 6, 50968 (2016).

  39. N.H. Luong, N. Chau, P.M. Huong, D. Le Minh, N.N. Chau, B.T. Cong, and M. Kurisu, On the Magnetic and Magnetocaloric Properties of Perovskite La1-xSrxCoO3. J. Magn. Magn. Mater. 242–245, 760 (2002).

    Article  Google Scholar 

  40. S. Naas, N. Abassi, and C. Boudaya, Effect of Lanthanum-Deficiency on Structural, Magnetic and Magnetocaloric Properties of La0.5Sr0.5CoO3. J. Mater. Sci. Mater. Electron. 28, 17985 (2017).

    Article  CAS  Google Scholar 

  41. I.G. Deac, and A. Vladescu, Magnetic and Magnetocaloric Properties of Pr1-xSrxCoO3 Cobaltites. J. Magn. Magn. Mater. 365, 1 (2014).

    Article  CAS  Google Scholar 

  42. J.C. Debnath, R. Zeng, J.H. Kim, P. Shamba, D.P. Chen, and S.X. Dou, Effect of Frozen Spin on the Magnetocaloric Property of La0.7Ca0.3CoO3 Polycrystalline and Single Crystal Samples. J. Alloys Compd. 510, 125 (2012).

    Article  CAS  Google Scholar 

  43. T.L. Phan, T.V. Manh, H.R. Park, B.W. Lee, S.C. Yu, H. Yang, C. Li, H.-G. Piao, Y.D. Zhang, D.H. Manh, and N.T. Dang, Magnetocaloric Effect in Ba-Doped LaCoO3 Cobaltites Showing Second-Order Phase Transitions. J. Magn. Magn. Mater. 539, 168378 (2021).

    Article  CAS  Google Scholar 

  44. V. Franco, J.S. Blázquez, J.J. Ipus, J.Y. Law, L.M. Moreno-Ramírez, and A. Conde, Magnetocaloric Effect: From Materials Research to Refrigeration Devices. Prog. Mater. Sci. 93, 112 (2018).

    Article  Google Scholar 

  45. R.D. Shannon, Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. Sect. A 32, 751 (1976).

    Article  Google Scholar 

  46. M. Arshad Farhan, and M. Javed Akhtar, Negative pressure driven phase transformation in Sr doped SmCoO3. Journal of Physics: Condensed Matter 22, 075402 (2010). https://doi.org/10.1088/0953-8984/22/7/075402.

    Article  CAS  Google Scholar 

  47. J.S. Zhou and J.B. Goodenough, Universal Octahedral-Site Distortion in Orthorhombic Perovskite Oxides. Phys. Rev. Lett. 94, 18 (2005).

    Article  Google Scholar 

  48. K. Fujita, T. Kawamoto, I. Yamada, O. Hernandez, H. Akamatsu, Y. Kumagai, F. Oba, P. Manuel, R. Fujikawa, S. Yoshida, M. Fukuda, and K. Tanaka, Perovskite-Type InCoO3 with Low-Spin Co3+: Effect of In-O Covalency on Structural Stabilization in Comparison with Rare-Earth Series. Inorg. Chem. 56, 11113 (2017).

    Article  CAS  Google Scholar 

  49. M. Korotin, S.Y. Ezhov, I. Solovyev, V. Anisimov, D. Khomskii, and G. Sawatzky, Intermediate-Spin State and Properties of LaCoO3. Phys. Rev. B 54, 5309 (1996).

    Article  CAS  Google Scholar 

  50. M. Feygenson, D.Y. Novoselov, M.A. Mazannikova, D.M. Korotin, M. Bushinsky, D. Karpinsky, M. Hanfland, A. Sazonov, S. Savvin, F. Porcher, R. Svetogorov, A. Veligzhanin, S. Tiutiunnikov, S. Arumugam, and V. Sikolenko, Pressure-Induced Structural and Magnetic Phase Transitions in La0.75Ba0.25CoO2.9 Studied with Scattering Methods and First-Principle Calculations. Phys. Rev. B 104, 144107 (2021).

    Article  CAS  Google Scholar 

  51. J.R. Sun, R.W. Li, and B.G. Shen, Spin-State Transition in La1-xSmxCoO3 Perovskites. J. Appl. Phys. 89, 1331 (2001).

    Article  CAS  Google Scholar 

  52. O. Haas, C. Ludwig, U. Bergmann, R.N. Singh, A. Braun, and T. Graule, X-Ray Absorption Investigation of the Valence State and Electronic Structure of La1-xCaxCoO3-δ in Comparison with La1-xSrxCoO3-δ and La1-xCaxFeO3-δ. J. Solid State Chem. 184, 3163 (2011).

    Article  CAS  Google Scholar 

  53. D.-S. Yang, I. Kim, A.N. Ulyanov, T.-L.. Phan, and S.-C. Yu, X-Ray Absorption Fine Structure Study of La0.5Sr0.5Co1 yFeyO3 Cobaltites. J. Phys. Soc. Japan 74, 2347–2350 (2005). https://doi.org/10.1143/JPSJ.74.2347.

    Article  CAS  Google Scholar 

  54. T.-L. Phan, P. Zhang, D.S. Yang, N.X. Nghia, and S.C. Yu, Local Structure and Paramagnetic Properties of Zn1-xMnxO. J. Appl. Phys. 110, 063912 (2011).

    Article  Google Scholar 

  55. J.B. Goodenough, An Interpretation of the Magnetic Properties of the Perovskite-Type Mixed Crystals La1-xSrxCoO3-λ. J. Phys. Chem. Solids 6, 287 (1958).

    Article  CAS  Google Scholar 

  56. M.B. Salamon, P. Lin, and S.H. Chun, Colossal Magnetoresistance Is a Griffiths Singularity. Phys. Rev. Lett. 88, 197203 (2002).

    Article  CAS  Google Scholar 

  57. S.M. Zhou, S.Y. Zhao, Y.Q. Guo, J.Y. Zhao, and L. Shi, Griffiths Phase and Exchange Bias in La1-xCaxMnO3 (x = 0.50, 0.67, and 0.75) Nanoparticles. J. Appl. Phys. 107, 033906 (2010).

    Article  Google Scholar 

  58. P. Tong, B. Kim, D. Kwon, T. Qian, S.I. Lee, S.W. Cheong, and B.G. Kim, Griffiths Phase and Thermomagnetic Irreversibility Behavior in Slightly Electron-Doped Manganites Sm1-xCaxMnO3 (080 ≤ x ≤092). Phys. Rev. B 77, 184432 (2008).

    Article  Google Scholar 

  59. S. Ghorai, S.A. Ivanov, R. Skini, and P. Svedlindh, Evolution of Griffiths Phase and Critical Behaviour of La1-xPbxMnO3±y Solid Solutions. J. Phys. Condens. Matter 33, 145801 (2021).

    Article  CAS  Google Scholar 

  60. R.X. Smith, M.J.R. Hoch, W.G. Moulton, P.L. Kuhns, A.P. Reyes, G.S. Boebinger, H. Zheng, and J.F. Mitchell, Evolution of the Spin-State Transition with Doping in La1-xSrxCoO3. Phys. Rev. B 86, 054428 (2012).

    Article  Google Scholar 

  61. V. Franco, J.S. Blázquez, B. Ingale, and A. Conde, The Magnetocaloric Effect and Magnetic Refrigeration Near Room Temperature: Materials and Models. Annu. Rev. Mater. Res. 42, 305 (2012).

    Article  CAS  Google Scholar 

  62. V. Franco, J.S. Blázquez, and A. Conde, Field Dependence of the Magnetocaloric Effect in Materials with a Second Order Phase Transition: A Master Curve for the Magnetic Entropy Change. Appl. Phys. Lett. 89, 222512 (2006).

    Article  Google Scholar 

  63. K. Dhahri, N. Dhahri, J. Dhahri, K. Taibi, and E.K. Hlil, Critical Phenomena and Estimation of the Spontaneous Magnetization from a Mean Field Analysis of the Magnetic Entropy Change in La0.7Ca0.1Pb0.2Mn0.95Al0.025Sn0.025O3. RSC Adv. 8, 3099 (2018).

    Article  CAS  Google Scholar 

  64. T.-L. Phan, N.T. Dang, T.A. Ho, T.V. Manh, T.D. Thanh, C.U. Jung, B.W. Lee, A.-T. Le, A.D. Phan, and S.C. Yu, First-to-Second-Order Magnetic-Phase Transformation in La0.7Ca0.3-xBaxMnO3 Exhibiting Large Magnetocaloric Effect. J. Alloys Compd. 657, 818 (2016).

    Article  CAS  Google Scholar 

  65. T.D. Shen, R.B. Schwarz, J.Y. Coulter, and J.D. Thompson, Magnetocaloric Effect in Bulk Amorphous Pd40Ni22.5Fe17.5P20 Alloy. J. Appl. Phys. 91, 5240 (2002).

    Article  CAS  Google Scholar 

  66. F. Saadaoui, M.M. Nofal, and R. M’nassri, M. Koubaa, N. Chniba-Boudjada, and A. Cheikhrouhou, Magnetic and Magnetocaloric Properties of La0.55Bi0.05Sr04CoO3 and Their Implementation in Critical Behaviour Study and Spontaneous Magnetization Estimation. RSC Adv. 9, 25064 (2019).

    Article  CAS  Google Scholar 

  67. F. Saadaoui and R. M’nassri, A. Mleiki, M. Koubaa, N. Chniba Boudjada, and A. Cheikhrouhou, Studies on the Structure, Critical Behavior and Magnetocaloric Effect in LaBiSrCoO Cobaltite. J. Mater. Sci. Mater. Electron. 28, 15500 (2017).

    Article  CAS  Google Scholar 

  68. A.M. Tishin and Y.I. Spichkin, The Magnetocaloric Effect and Its Applications (IOP Publishing Ltd, 2003). https://doi.org/10.1887/0750309229.

    Book  Google Scholar 

  69. D.N.H. Nam, R. Mathieu, P. Nordblad, N.V. Khiem, and N.X. Phuc, Ferromagnetism and frustration in Nd0.7Sr0.3MnO3. Physical Review B 62, 1027–1032 (2000). https://doi.org/10.1103/PhysRevB.62.1027.

    Article  CAS  Google Scholar 

  70. A. Kumari, C. Dhanasekhar, and A.K. Das, Effect of Sr Doping on Structural and Magnetic Behavior of SmBa1-xSrxCo2O5+δ (x = 0 and 1). Phys. B 536, 267 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by the National Research Foundation of Korea Grant No. 2020R1A2C1008115. The work was also supported by the National Research Foundation of Korea (NRF) grants funded by the Korean government’s Ministry of Science and ICT (MSIT, 2020R1A2B5B01002184). In Vietnam, the work was supported by the Vietnam Ministry of Education and Training grant No. B2022-SPK-07.

Author information

Authors and Affiliations

Authors

Contributions

TVM, YP, NTD, and TLP: Conceptualization, Methodology and Writing; NT, HRP: Investigation; BWL, SCY: Reviewing and Editing.

Corresponding author

Correspondence to S. C. Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manh, T.V., Pham, Y., Phan, T.L. et al. Electronic Structure and Magnetocaloric Effect of Sr-Doped SmCoO3 Perovskites. J. Electron. Mater. 52, 177–187 (2023). https://doi.org/10.1007/s11664-022-09943-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09943-7

Keywords

Navigation