Skip to main content
Log in

CTAB-Regulated Synthesis of Hexagonal K3V3(PO4)4·H2O Polyanionic Materials as Anodes for Na-Ion Batteries

  • Topical Collection: Advanced Metal Ion Batteries
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Sodium-ion batteries (SIBs) have attracted industrial and academic interest due to the low cost of sodium (Na) resources and their good electrochemical performance. However, exploring advanced anode materials with a robust framework and appropriate crystallographic sites remains a great challenge. This work adopts a microwave-assisted hydrothermal method to synthesize hydrated vanadium (VIII) phosphate [K3V3(PO4)4·H2O, KVP] with cetyltrimethylammonium bromide (CTAB) as template agent. CTAB not only helps to improve the crystallinity of KVP, with high purity, but also regulates the KVP particles, with a hexagonal microstructure. Benefiting from the unique microstructure with high phase purity and the excellent electrical conductivity imbued by CTAB carbonization, the synthesized KVP and CTAB (KVP-CTAB) electrode delivers superior reversible specific capability (139.5 mAh g−1 at 0.1 C at the first cycle) and better rate capability (70.5 mAh g−1 at 5 C after 3000 cycles). Cyclic voltammetry, electrochemical impedance spectroscopy (EIS), and the galvanostatic intermittent titration technique reveal minimized polarization, smaller impedance, and faster diffusion kinetics of the KVP-CTAB electrode compared with the KVP-P electrode. Ex situ x-ray diffraction (XRD) measurements further reveal that the electrochemical mechanism is a reversible intercalation-conversion reaction of sodium ions. This work shows that KVP can serve as an appropriate anode material for SIBs, and also offers new insights into the design and preparation of hydrated vanadium phosphate composites, demonstrating the feasibility of adopting Na-free KVP polyanions as a robust framework for the advanced anode in SIBs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Zheng, H. Huang, Y. Dong, S. Wang, F. Zhou, J. Qin, C. Sun, Y. Yu, Z.-S. Wu, and X. Bao, Energy Environ. Sci. 13, 821–829 (2020). https://doi.org/10.1039/c9ee03219c.

    Article  CAS  Google Scholar 

  2. S. Zhang, Z. Liu, L. Li, Y. Tang, S. Li, H. Huang, and H. Zhang, J. Mater. Chem. A 9, 18488–18497 (2021). https://doi.org/10.1039/d1ta05205e.

    Article  CAS  Google Scholar 

  3. Y. Zhang, R. Zhan, Q. Xu, H. Liu, M. Tao, Y. Luo, S. Bao, C. Li, and M. Xu, Chem. Eng. J. 357, 220–225 (2019). https://doi.org/10.1016/j.cej.2018.09.142.

    Article  CAS  Google Scholar 

  4. Y. Zhang, X. Xia, B. Liu, S. Deng, D. Xie, Q. Liu, Y. Wang, J. Wu, X. Wang, and J. Tu, Adv. Energy Mater. 9, 1803342 (2019). https://doi.org/10.1002/aenm.201803342.

    Article  CAS  Google Scholar 

  5. Y. Zhang, S. Lu, M.Q. Wang, Y. Niu, S. Liu, Y. Li, X. Wu, S.J. Bao, and M. Xu, Mater. Lett. 178, 44–47 (2016). https://doi.org/10.1016/j.matlet.2016.04.197.

    Article  CAS  Google Scholar 

  6. X. Xu, R. Zhao, B. Chen, L. Wu, C. Zou, W. Ai, H. Zhang, W. Huang, and T. Yu, Adv. Mater. 31, e1900526 (2019). https://doi.org/10.1002/adma.201900526.

    Article  CAS  Google Scholar 

  7. Z. Wang, H. Gao, Q. Zhang, Y. Liu, J. Chen, and Z. Guo, Small 15, e1803858 (2019). https://doi.org/10.1002/smll.201803858.

    Article  CAS  Google Scholar 

  8. Q. Gui, D. Ba, Z. Zhao, Y. Mao, W. Zhu, T. Lei, J. Tan, B. Deng, L. Xiao, Y. Li, and J. Liu, Small Methods 3, 1800371 (2019). https://doi.org/10.1002/smtd.201800371.

    Article  CAS  Google Scholar 

  9. S. Ni, J. Liu, D. Chao, and L. Mai, Adv. Energy Mater. 9, 1803324 (2019). https://doi.org/10.1002/aenm.201803324.

    Article  CAS  Google Scholar 

  10. Y. Ma, Q. Guo, M. Yang, Y. Wang, T. Chen, Q. Chen, X. Zhu, Q. Xia, S. Li, and H. Xia, Energy Storage Mater. 13, 134–141 (2018). https://doi.org/10.1016/j.ensm.2018.01.005.

    Article  Google Scholar 

  11. J. Li, Z. Ding, J. Li, C. Wang, L. Pan, and G. Wang, Chem. Eng. J. 407, 127199 (2021). https://doi.org/10.1016/j.cej.2020.127199.

    Article  CAS  Google Scholar 

  12. Y. Liu, Y. Fang, Z. Zhao, C. Yuan, and X.W.D. Lou, Adv. Energy Mater. 9, 1803052 (2019). https://doi.org/10.1002/aenm.201803052.

    Article  CAS  Google Scholar 

  13. Y. Li, F. Wu, and S. Xiong, Electrochim. Acta 296, 582–589 (2019). https://doi.org/10.1016/j.electacta.2018.11.059.

    Article  CAS  Google Scholar 

  14. Y. Li, H. Wang, L. Wang, Z. Mao, R. Wang, B. He, Y. Gong, and X. Hu, Small 15, e1804539 (2019). https://doi.org/10.1002/smll.201804539.

    Article  CAS  Google Scholar 

  15. S. Deng, H. Zhu, G. Wang, M. Luo, S. Shen, C. Ai, L. Yang, S. Lin, Q. Zhang, L. Gu, B. Liu, Y. Zhang, Q. Liu, G. Pan, Q. Xiong, X. Wang, X. Xia, and J. Tu, Nat. Commun. 11, 132 (2020). https://doi.org/10.1038/s41467-019-13945-1.

    Article  CAS  Google Scholar 

  16. S. Chen, D. Ren, M. Zhang, H. Wang, B. He, Y. Gong, and R. Wang, Solid State Ionics 327, 52–58 (2018). https://doi.org/10.1016/j.ssi.2018.10.021.

    Article  CAS  Google Scholar 

  17. P.R. Kumar, Y.H. Jung, C.H. Lim, and D.K. Kim, J. Mater. Chem. A 3, 6271–6275 (2015). https://doi.org/10.1039/c5ta00980d.

    Article  CAS  Google Scholar 

  18. T. Jin, H. Li, K. Zhu, P.F. Wang, P. Liu, and L. Jiao, Chem. Soc. Rev. 49, 2342–2377 (2020). https://doi.org/10.1039/c9cs00846b.

    Article  CAS  Google Scholar 

  19. L. Shao, J. Hong, S. Wang, F. Wu, F. Yang, X. Shi, and Z. Sun, J. Power Sources 491, 229627 (2021). https://doi.org/10.1016/j.jpowsour.2021.229627.

    Article  CAS  Google Scholar 

  20. Y. Tian, J. Julio-Gutiérrez-Moreno, Z. Lu, L. Li, M. Hu, D. Liu, Z. Jian, and X. Cai, Chem. Eng. J. 407, 127198 (2021). https://doi.org/10.1016/j.cej.2020.127198.

    Article  CAS  Google Scholar 

  21. C. Yuan, L. Yang, L. Hou, J. Li, Y. Sun, X. Zhang, L. Shen, X. Lu, S. Xiong, and X.W.D. Lou, Adv. Funct. Mater. 22, 2560–2566 (2012). https://doi.org/10.1002/adfm.201102860.

    Article  CAS  Google Scholar 

  22. B. Li, B. Xi, F. Wu, H. Mao, J. Liu, J. Feng, and S. Xiong, Adv. Energy Mater. 9, 1803070 (2019). https://doi.org/10.1002/aenm.201803070.

    Article  CAS  Google Scholar 

  23. T. Jenkins, J.A. Alarco, and I.D.R. Mackinnon, ACS Omega 6, 1917–1929 (2021). https://doi.org/10.1021/acsomega.0c04675.

    Article  CAS  Google Scholar 

  24. L.B. Tang, B. Zhang, T. Peng, Z.J. He, C. Yan, J. Mao, K. Dai, X.W. Wu, and J.C. Zheng, Nano Energy 90, 106568 (2021). https://doi.org/10.1016/j.nanoen.2021.106568.

    Article  CAS  Google Scholar 

  25. H. Yang, S. Kannappan, A.S. Pandian, J.H. Jang, Y.S. Lee, and W. Lu, J. Power Sources 284, 146–153 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.015.

    Article  CAS  Google Scholar 

  26. J. He, T. Tao, F. Yang, Z. Sun, and A.C.S. Appl, Mater. Interfaces 13, 60099–60114 (2021). https://doi.org/10.1021/acsami.1c21271.

    Article  CAS  Google Scholar 

  27. T. Jenkins, J.A. Alarco, B. Cowie, I.D.R. Mackinnon, and A.C.S. Appl, Mater. Interfaces 13, 45505–45520 (2021). https://doi.org/10.1021/acsami.1c12447.

    Article  CAS  Google Scholar 

  28. Z. Zhang, Y. Ni, M. Avdeev, W.H. Kan, and G. He, Electrochim. Acta 365, 137376 (2021). https://doi.org/10.1016/j.electacta.2020.137376.

    Article  CAS  Google Scholar 

  29. J. He, T. Tao, F. Yang, and Z. Sun, Chemsuschem 15, e202102522 (2022). https://doi.org/10.1002/cssc.202102522.

    Article  CAS  Google Scholar 

  30. J. He, T. Tao, F. Yang, and Z. Sun, Chemsuschem 15, e202200817 (2022). https://doi.org/10.1002/cssc.202200817.

    Article  CAS  Google Scholar 

  31. L.W. Li, L.P. Wang, M.Y. Zhang, Q.Z. Huang, K.J. He, and F.X. Wu, Trans. Nonferrous Metals Soc. China 30, 1904–1915 (2020). https://doi.org/10.1016/s1003-6326(20)65349-3.

    Article  CAS  Google Scholar 

  32. L. Yu, L. Shao, S. Wang, J. Guan, X. Shi, J. Cai, N. Tarasenko, and Z. Sun, Mater. Today Phys. 22, 100593 (2022). https://doi.org/10.1016/j.mtphys.2021.100593.

    Article  CAS  Google Scholar 

  33. F. Wang, G. Li, X. Meng, Y. Li, Q. Gao, Y. Xu, and W. Cui, Inorg. Chem. Front. 5, 2462–2471 (2018). https://doi.org/10.1039/c8qi00679b.

    Article  CAS  Google Scholar 

  34. L. Yu, L. Shao, R. Pan, J. Lin, J. Guan, X. Shi, J. Cai, C. Chen, and Z. Sun, J. Power Sources 542, 231801 (2022). https://doi.org/10.1016/j.jpowsour.2022.231801.

    Article  CAS  Google Scholar 

  35. T. Tao, J. He, Y. Wang, X. Shi, L. Shao, A. Trukhanov, and Z. Sun, J. Power Sources 539, 231457 (2022). https://doi.org/10.1016/j.jpowsour.2022.231457.

    Article  CAS  Google Scholar 

  36. J. Wang, L. Wang, C. Eng, and J. Wang, Adv. Energy Mater. 7, 1602706 (2017). https://doi.org/10.1002/aenm.201602706.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 21905058, 21901047) and Guangdong University of Technology Hundred Talents Program (No. 220418136). The authors thank Dr. Wu Qiguang of GDUT Analysis and Test Center for his assistance during the TEM measurement. The authors would like to thank Yaping Li from Shiyanjia Lab (www.shiyanjia.com) for the XPS measurement and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhipeng Sun.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 359 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, T., Wang, Y., Peng, H. et al. CTAB-Regulated Synthesis of Hexagonal K3V3(PO4)4·H2O Polyanionic Materials as Anodes for Na-Ion Batteries. J. Electron. Mater. 51, 6615–6625 (2022). https://doi.org/10.1007/s11664-022-09907-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09907-x

Keywords

Navigation