Skip to main content
Log in

A DFT Study on the Relationship Between Molecular Structure and Electron Transport in Molecular Junctions

  • Topical Collection: Advanced Materials for Energy Generation and Storage
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Here we report how the chemical functionalization of the bridge molecule influences the electronic properties of conjugated terthiophene and the electronic coupling, i.e., the linkage between molecule and electrode, using density functional theory (DFT) methods. Furthermore, we explore the modulation in electron transport properties of molecular junctions with various functional derivatives utilizing a combination of DFT and electron transport non-equilibrium Green’s function (NEGF) calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. C. Cuevas, J. Heurich, F. Pauly, W. Wenzel, and G. Schön, Nanotechnology (2003).

  2. I. Bâldea, Molecular Electronics - An Experimental and Theoretical Approach (Pan Stanford Publishing Pte Ltd., 2018).

  3. M. Kilgour and D. Segal, J. Chem. Phys. 143, 024111 (2015).

    Article  Google Scholar 

  4. S.Y. Sayed, J.A. Fereiro, H. Yan, R.L. McCreery, and A.J. Bergren, Proc. Natl. Acad. Sci. U.S.A. 109, 11498 (2012).

    Article  CAS  Google Scholar 

  5. H.B. Akkerman and B. de Boer, J. Phys. Condens. Matter. 20, 013001 (2007).

    Article  Google Scholar 

  6. D.K. Aswal, S. Lenfant, D. Guerin, J.V. Yakhmi, and D. Vuillaume, Anal. Chim. Acta. 568, 84 (2006).

    Article  CAS  Google Scholar 

  7. C. Joachim, J.K. Gimzewski, and A. Aviram, Nature 408, 541 (2000).

    Article  CAS  Google Scholar 

  8. S. E. Lyshevski, Nano and Molecular Electronics Handbook (Boca Raton : CRC Press, c2007., 2007).

  9. R.M. Metzger, Chem. Rev. 115, 5056 (2015).

    Article  CAS  Google Scholar 

  10. J.R. Heath and M.A. Ratner, Phys. Today. 56, 43 (2003).

    Article  CAS  Google Scholar 

  11. X.D. Cui, A. Primak, X. Zarate, J. Tomfohr, O.F. Sankey, A.L. Moore, T.A. Moore, D. Gust, G. Harris, and S.M. Lindsay, Science 294, 571 (2001).

    Article  CAS  Google Scholar 

  12. B. Mukherjee, A.K. Ray, A.K. Sharma, and D. Huang, J. Mater. Sci. Mater. Electron. 28, 3936 (2017).

    Article  CAS  Google Scholar 

  13. L. Sun, Y.A. Diaz-Fernandez, T.A. Gschneidtner, F. Westerlund, S. Lara-Avila, and K. Moth-Poulsen, Chem. Soc. Rev. 43, 7378 (2014).

    Article  CAS  Google Scholar 

  14. L. Wang and V. May, Chem. Phys. 375, 252 (2010).

    Article  CAS  Google Scholar 

  15. N. Papior, N. Lorente, T. Frederiksen, A. García, and M. Brandbyge, Comput. Phys. Commun. 212, 8 (2017).

    Article  CAS  Google Scholar 

  16. M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Phys. Rev. B 65, 165401 (2002).

    Article  Google Scholar 

  17. S. Kharwar, S. Singh, and N.K. Jaiswal, J. Electron. Mater. 50, 5664 (2021).

    Article  CAS  Google Scholar 

  18. S. Kharwar, S. Singh, and N.K. Jaiswal, J. Electron. Mater. 50, 1196 (2021).

    Article  CAS  Google Scholar 

  19. M. Scheuble, M. Goll, and S. Ludwigs, Macromol. Rapid Commun. 36, 115 (2015).

    Article  CAS  Google Scholar 

  20. S. Yuan, C. Dai, J. Weng, Q. Mei, Q. Ling, L. Wang, and W. Huang, J. Phys. Chem. A 115, 4535 (2011).

    Article  CAS  Google Scholar 

  21. G. Zotti, B. Vercelli, and A. Berlin, Chem. Mater. 20, 397 (2008).

    Article  CAS  Google Scholar 

  22. F. Rodríguez-Ropero, J. Casanovas, and C. Alemán, J. Comput. Chem. 29, 69 (2008).

    Article  Google Scholar 

  23. K. Settu, Y.-M. Huang, and S.-X. Zhou, ECS. J. Solid. State. Sci. Technol. 9, 121002 (2020).

    Article  CAS  Google Scholar 

  24. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16 Rev. C.01 (Wallingford, CT, 2016).

  25. K. Stokbro, J. Taylor, M. Brandbyge, and P. Ordejón, Ann. N. Y. Acad. Sci. 1006, 212 (2004).

    Article  Google Scholar 

  26. M. Mladenović and N. Vukmirović, Adv. Func. Mater. 25, 1915 (2015).

    Article  Google Scholar 

  27. M. Jovanovic and J. Michl, J. Am. Chem. Soc. 141, 13101 (2019).

    Article  CAS  Google Scholar 

  28. J. Jia, H.-S. Wu, and Y. Mo, J. Chem. Phys. 136, 144315 (2012).

    Article  Google Scholar 

  29. S.S. Zade and M. Bendikov, Chem. Eur. J. 13, 3688 (2007).

    Article  CAS  Google Scholar 

  30. S. Fatayer, B. Schuler, W. Steurer, I. Scivetti, J. Repp, L. Gross, M. Persson, and G. Meyer, Nat. Nanotechnol. 13, 376 (2018).

    Article  CAS  Google Scholar 

  31. J. Emma, Dell (Single-Molecule Conductance of Oligothiophene Derivatives: COLUMBIA UNIVERSITY, 2015).

    Google Scholar 

Download references

Acknowledgments

KR acknowledges financial support from the Department of Physics and SRM University research program for her doctoral fellowship. SM acknowledges SERB-DST, Govt. of India, for Early Career Research Award grants (ECR/2017/001937), and SRM University research funding for financial support. MKR thanks the Department of Science and Technology (DST), New Delhi, India (DST/INSPIRE/04/2017/001393), for providing a research fellowship under the DST-INSPIRE faculty scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahesh Kumar Ravva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramya, K., Mukhopadhyay, S. & Ravva, M.K. A DFT Study on the Relationship Between Molecular Structure and Electron Transport in Molecular Junctions. J. Electron. Mater. 52, 1615–1624 (2023). https://doi.org/10.1007/s11664-022-09861-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09861-8

Keywords

Navigation