Skip to main content

Contacts to Thermoelectric Materials Obtained by Chemical and Electrochemical Deposition of Ni and Co

Abstract

Chemical and electrochemical methods of obtaining thick-film nickel and cobalt contacts to thermoelectric (TE) materials based on bismuth and antimony chalcogenides have been proposed. Chemical deposition of Ni and Co films was carried out on a sublayer of these metals formed by magnetron sputtering. Electrochemical deposition was carried out on the sublayer and directly on the TE material. In both cases, a uniform homogeneous coating with a thickness from 8 to 12 µm was obtained. In the films formed by chemical deposition, the content of Ni and Co was at least 62 at%, with the phosphorus content of up to 21 at%. The electrochemically deposited films contained at least 91 at% Ni and Co. The specific resistances of the Ni and Co films obtained by electrochemical deposition were 6.78 × 10−8 Ohm m and 7.48 × 10−8 Ohm m, respectively. For the chemically deposited Ni and Co films, the specific resistances were 12.48 × 10−8 Ohm m and 9.65 × 10−8 Ohm m, respectively. For the electrochemically deposited metals, the specific contact resistance for the Ni and Co films did not exceed 2.03 × 10−9 Ohm m2, while, for the chemically deposited films, this parameter was 4.76 × 10−9 Ohm m2. The adhesion strength for the films on the TE materials of n- and p-types did not differ significantly. For films formed by electrochemical deposition, the adhesion strength was higher in the case of using sublayers and was at least 12 MPa, which was 12–20% higher than for the films formed by chemical deposition. The investigation results can be successfully used in the technology of efficient thermoelements.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

References

  1. Statistics report Coal 2021 Analysis and Forecast to 2024. (International Energy Agency, 2021) https://www.iea.org/fuels-and-technologies/coal/. Accessed 25 January 2022

  2. Statistics Report Key World Energy Statistics 2021. (International Energy Agency, 2021), https://www.iea.org/reports/key-world-energy-statistics-2021/. Accessed 25 January 2022

  3. W. He, G. Zhang, X. Zhang, J. Ji, G. Li, and X. Zhao, Recent Development and Application of Thermoelectric Generator and Cooler. Appl. Energy 143, 1 (2015).

    Article  Google Scholar 

  4. S.Y. Cheon, H. Lim, and J.W. Jeong, Applicability of Thermoelectric Heat Pump in a Dedicated Outdoor air System. Energy 173, 244 (2019).

    Article  Google Scholar 

  5. P. Aranguren, S. DiazDeGarayo, A. Martinez, M. Araiz, and D. Astrain, Heat Pipes Thermal Performance for a Reversible Thermoelectric Cooler-Heat Pump for a nZEB. Energy Build. 187, 163 (2019).

    Article  Google Scholar 

  6. D. Champier, Thermoelectric Generators: A Review of Applications. Energy Convers. Manage. 140, 167 (2017).

    Article  Google Scholar 

  7. X. Zhang and L.-D. Zhao, Thermoelectric Materials: Energy Conversion Between Heat and Electricity. J. Materiomics 1, 92 (2015).

    Article  Google Scholar 

  8. R. He, G. Schierning, and K. Nielsch, Thermoelectric Devices: A Review of Devices. Adv. Mater. Technol. 3, 1700256 (2018).

    Article  CAS  Google Scholar 

  9. M. Shtern, M. Rogachev, Y. Shtern, A. Sherchenkov, A. Babich, E. Korchagin, and D. Nikulin, Thermoelectric Properties of Efficient Thermoelectric Materials on the Basis of Bismuth and Antimony Chalcogenides for Multisection Thermoelements. J. Alloys Compd. 877, 160328 (2021).

    CAS  Article  Google Scholar 

  10. MYu. Shtern, A.A. Sherchenkov, Yu.I. Shtern, M.S. Rogachev, and A.V. Babich, Thermoelectric Properties and Thermal Stability of Nanostructured Thermoelectric Materials on the Basis of PbTe, GeTe, and SiGe. Nanobiotechnol. Rep. 16, 363 (2021).

    Article  Google Scholar 

  11. A.A. Sherchenkov, Y.I. Shtern, M.Y. Shtern, and M.S. Rogachev, Prospects of Creating Efficient Thermoelectric Materials Based on the Achievements of Nanotechnology. Nanotechnol. Russ. 11, 387 (2016).

    Article  Google Scholar 

  12. Y. Ouyang, Z. Zhang, D. Li, J. Chen, and G. Zhang, Emerging Theory, Materials, and Screening Methods: New Opportunities for Promoting Thermoelectric Performance. Ann. Phys. (Berlin) 531, 1800437 (2019).

    CAS  Article  Google Scholar 

  13. M. Dutta, T. Ghosh, and K. Biswas, Electronic Structure Modulation Strategies in High-Performance Thermoelectric. APL Mater. 8, 040910 (2020).

    CAS  Article  Google Scholar 

  14. Z. Ma, J. Wei, P. Song, M. Zhang, L. Yang, J. Ma, W. Liu, F. Yang, and X. Wang, Review of Experimental Approaches for Improving zT of Thermoelectric Materials. Mater. Sci. Semicond. Process. 121, 105303 (2021).

    CAS  Article  Google Scholar 

  15. P. Ren, Y. Liu, J. He, T. Lv, J. Gao, and G. Xu, Recent Advances in Inorganic Material Thermoelectrics. Inorg. Chem. Front. 5, 2380 (2018).

    CAS  Article  Google Scholar 

  16. W. Liu and S. Bai, Thermoelectric Interface Materials: A Perspective to the Challenge of Thermoelectric Power Generation Module. J. Materiomics 5, 321 (2019).

    Article  Google Scholar 

  17. H. Tang, H. Bai, X. Yang, Y. Cao, K. Tang, Z. Zhang, S. Chen, D. Yang, X. Su, Y. Yan, and X. Tang, Thermal Stability and Interfacial Structure Evolution of Bi2Te3-Based Micro Thermoelectric Devices. J. Alloys Compd. 896, 163090 (2021).

    Article  CAS  Google Scholar 

  18. X. Zhu, L. Cao, W. Zhu, and Y. Deng, Enhanced Interfacial Adhesion and Thermal Stability in Bismuth Telluride/Nickel/Copper Multilayer Films with Low Electrical Contact Resistance. Adv. Mater. Interfaces 5, 180279 (2018).

    Google Scholar 

  19. L.M. Vikhor, L.I. Anatychuk, and P.V. Gorskyi, Electrical Resistance of Metal Contact to Bi2Te3 Based Thermoelectric Legs. J. Appl. Phys. 126, 164503 (2019).

    Article  CAS  Google Scholar 

  20. G. Joshi, D. Mitchell, J. Ruedin, K. Hoover, R. Guzman, M. McAleer, L. Wood, and S. Savoy, Pulsed-Light Surface Annealing for Low Contact Resistance Interfaces Between Metal Electrodes and Bismuth Telluride Thermoelectric Materials. J. Mater. Chem. C 7, 479 (2019).

    CAS  Article  Google Scholar 

  21. M. Shtern, M. Rogachev, Y. Shtern, D. Gromov, A. Kozlov, and I. Karavaev, Thin-Film Contact Systems for Thermocouples Operating in a Wide Temperature Range. J. Alloys Compd. 852, 156889 (2021).

    CAS  Article  Google Scholar 

  22. R. Chetty, Y. Kikuchi, Y. Bouyrie, K. Suekuni, A. Yamamoto, P. Jood, and M. Ohta, Power Generation From the Cu26Nb2Ge6S32-Based Single Thermoelectric Element With Au Diffusion Barrier. J. Mater. Chem. C 7, 5184 (2019).

    CAS  Article  Google Scholar 

  23. MYu. Shtern, Multi-Section Thermoelements, Advantages and Problems of Their Creation. Fiz. Tech. Poluprovodn. 55, 1105 (2021).

    Google Scholar 

  24. MYu. Shtern, A.O. Kozlov, Yu.I. Shtern, M.S. Rogachev, E.P. Korchagin, B.R. Mustafoev, and A.A. Dedkova, Obtaining and Investigation of Ohmic Contacts With High Adhesion to Thermoelements. Fiz. Tech. Poluprovodn. 55, 1097 (2021).

    Google Scholar 

  25. W. Li, B. Poudel, A. Nozariasbmarz, R. Sriramdas, H. Zhu, H.B. Kang, and S. Priya, Bismuth Telluride/Half-Heusler Segmented Thermoelectric Unicouple Modules Provide 12% Conversion Efficiency. Adv. Energy Mater. 10, 2001924 (2020).

    CAS  Article  Google Scholar 

  26. P.H. Ngan, L. Han, and D.V. Christensen, Joining of Half-Heusler and Bismuth Tellurides for Segmented Thermoelectric Generators. J. Electron. Mater. 47, 701 (2018).

    CAS  Article  Google Scholar 

  27. W. Wang, X. Li, M. Gu, Y. Xing, and Y. Bao, Low Temperature Joining and High Temperature Application of Segmented Half Heusler/Skutterudite Thermoelectric Joints. Materials 13, 155 (2020).

    CAS  Article  Google Scholar 

  28. C.C. Li, F. Drymiotis, L.L. Liao, H.T. Hung, J.H. Ke, C.K. Liu, C.R. Kao, and G.J. Snyder, Interfacial Reactions Between PbTe-Based Thermoelectric Materials and Cu and Ag Bonding Materials. J. Mater. Chem. C 3, 10590 (2015).

    CAS  Article  Google Scholar 

  29. D.G. Gromov, Yu.I. Shtern, M.S. Rogachev, A.S. Shulyat’ev, E.P. Kirilenko, MYu. Shtern, V.A. Fedorov, and M.S. Mikhailova, Mo/Ni and Ni/Ta-W-N/Ni Thinfilm Contact Layers for (Bi, Sb)2Te3-Based Intermediate-Temperature Thermoelectric Elements. Inorg. Mater. 52, 1132 (2016).

    CAS  Article  Google Scholar 

  30. R.P. Gupta, K. Xiong, J.B. White, K. Cho, H.N. Alshareef, and B.E. Gnadea, Low Resistance Ohmic Contacts to Bi2Te3 Using Ni and Co Metallization. J. Electrochem. Soc. 157, H666 (2010).

    CAS  Article  Google Scholar 

  31. W. Liu, H. Wang, L. Wang, X. Wang, G. Joshi, G. Chen, and Z. Ren, Understanding of the contact of nanostructured thermoelectric n-type Bi2Te2.7Se0.3 legs for power generation applications. J. Mater. Chem. A 1, 13093 (2013).

    CAS  Article  Google Scholar 

  32. J. de Boor, C. Gloanec, H. Kolb, R. Sottong, P. Ziolkowsk, and E. Muller, Fabrication and Characterization of nickel Contacts for Magnesium Silicide Based Thermoelectric Generators. J. Alloys Compd. 632, 348 (2015).

    Article  CAS  Google Scholar 

  33. P.A. Sharma, M. Brumbach, D.P. Adams, J.F. Ihlefeld, A.L. Lima-Sharma, S. Chou, J.D. Sugar, P. Lu, J.R. Michael, and D. Ingersoll, Electrical Contact Uniformity and Surface Oxidation of Ternary Chalcogenide Alloys. AIP Adv. 9, 015125 (2019).

    Article  CAS  Google Scholar 

  34. V. Kessler, M. Dehnen, R. Chavez, M. Engenhorst, J. Stoetzel, N. Petermann, K. Hesse, T. Huelser, M. Spree, C. Stiewe, P. Ziolkowski, G. Schierning, and R. Schmechel, Fabrication of High-Temperature-Stable Thermoelectric Generator Modules Based on Nanocrystalline Silicon. J. Electron. Mater. 43, 1389 (2014).

    CAS  Article  Google Scholar 

  35. J. de Boor, D. Droste, C. Schneider, J. Janek, and E. Mueller, Thermal Stability of Magnesium Silicide/Nickel Contacts. J. Electron. Mater. 45, 5313 (2016).

    Article  CAS  Google Scholar 

  36. C.-H. Wang, H.-C. Hsieh, H.-Y. Lee, and A.T. Wu, Co-P Diffusion Barrier for p-Bi2Te3 Thermoelectric Material. J. Electron. Mater. 48, 53 (2019).

    Article  CAS  Google Scholar 

  37. C.-H. Wang, H.-C. Hsieh, Z.-W. Sun, V.K. Ranganayakulu, T.-W. Lan, Y.-Y. Chen, Y.-Y. Chang, and A.T. Wu, Interfacial Stability in Bi2Te3 Thermoelectric Joints. ACS Appl. Mater. Interfaces 12, 27001 (2020).

    CAS  Article  Google Scholar 

  38. D. Zillmann, D. Metz, B. Matheis, A. Dietzel, A. Waag, and E. Peiner, Thermoelectric Generators Fabricated from Large-Scale-Produced Zr-/Hf-Based Half-Heusler Compounds Using Ag Sinter Bonding. J. Electron. Mater. 48, 5363 (2019).

    CAS  Article  Google Scholar 

  39. H.-C. Hsieh, C.-H. Wang, Ti.-W. Lan, T.-H. Lee, Y.-Y. Chen, H.-S. Chu, and A.T. Wu, Joint Properties Enhancement for PbTe Thermoelectric Materials by Addition of Diffusion Barrier. Mater. Chem. Phys. 246, 122848 (2020).

    CAS  Article  Google Scholar 

  40. M.Y. Shtern, I.S. Karavaev, Y.I. Shtern, A.O. Kozlov, and M.S. Rogachev, The Surface Preparation of Thermoelectric Materials for Deposition of Thin-Film Contact Systems. Semiconductors 53, 1848 (2019).

    CAS  Article  Google Scholar 

  41. T. Sakamoto, Y. Taguchi, T. Kutsuwa, K. Ichimi, S. Kasatani, and M. Inada, Investigation of Barrier-Layer Materials for Mg2Si/Ni Interfaces. J. Electron. Mater. 45, 1321 (2016).

    CAS  Article  Google Scholar 

  42. S. Kashi, M.K. Keshavarz, D. Vasilevskiy, R.A. Masut, and S. Turenne, Effect of Surface Preparation on Mechanical Properties of Ni Contacts on Polycrystalline (Bi1-xSbx)2(Te1-ySey)3 Alloys. J. Electron. Mater. 41, 1227 (2012).

    CAS  Article  Google Scholar 

  43. L.-W. Chen, C. Wang, Y.-C. Liao, C.-L. Li, T.-H. Chuang, and C.-H. Hsueh, Design of Diffusion Barrier and Buffer Layers for b-Zn4Sb3 Mid-Temperature Thermoelectric Modules. J. Alloys Compd. 762, 631 (2018).

    CAS  Article  Google Scholar 

  44. M. Shtern, M. Rogachev, Y. Shtern, A. Kozlov, A. Sherchenkov, E. Korchagin, in 2021 International Seminar on Electron Devices Design and Production, SED 2021—Proceedings (2021), p. 9444502

  45. Y.D. Gamburg, Electroplating coatings (Moscow: Application Reference, 2006).

    Google Scholar 

  46. P.S. Mel’nikov, Handbook of electroplating in mechanical engineering (Moscow: Mechanical Engineering, 1991).

    Google Scholar 

  47. Y.D. Gamburg and G. Zangari, Theory and practice of metal electrodeposition (New York: Springer, 2011).

    Book  Google Scholar 

  48. V.V. Sviridov, Chemical precipitation of metals from aqueous solutions (Minsk: University, 1987).

    Google Scholar 

  49. F.F. Azhogin, M.A. Belen’kij, I.E. Gall’, and M.I. Garber, Electroplating (Moscow: Handbook (Metallurgy, 1987).

    Google Scholar 

  50. Handbook of chemistry and physics, ed. R.D. Lide. (CRC Press LLC, Boca Raton, 2004)

  51. A.V. Moskvin, E.E. Bibik, L.M. Bykova, V. G. Vavilov, S.G. Izotova, A.M. Markov, O.A. Pinchuk, A.V. Red'ko, B.P. Sushkin, M.Y. Skripkin, A.A. Chetverikov, The new handbook of chemist and technologist. General information. Structure of the substance (NPO Professional, Saint Petersburg, 2006)

  52. V. Véronique, J. Hastira, A. Mégreta, S. Yazdania, M. Yunactia, and L. Boninb, Recent Advances in Electroless Nickel-Boron Coatings. Surf. Coat. Technol. 429, 127937 (2022).

    Article  CAS  Google Scholar 

  53. Surface and Interface Science: Volume 9, ed. by K. Wandelt (Wiley VCH, Weinheim, 2020).

  54. S.W. Chen, T.R. Yang, C.Y. Wu, H.W. Hsiao, H.S. Chu, J.D. Huang, and T.W. Liou, Interfacial Reactions in the Ni/(Bi0.25Sb0.75)2Te3 and Ni/Bi2(Te0.9Se0.1)3 Couples. J. Alloys Compd. 686, 847 (2016).

    CAS  Article  Google Scholar 

  55. Thermal Constants of Substances, ed. V.P. Glushko (VINITI, Moscow, 1972)

  56. L.P. Ruzinov and B.S. Gulyackih, Equilibrium transformations of metallurgical reactions (Moscow: Metallurgy, 1975).

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Science Foundation (Grant Number 20-19-00494).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim Rogachev.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Korchagin, E., Shtern, M., Petukhov, I. et al. Contacts to Thermoelectric Materials Obtained by Chemical and Electrochemical Deposition of Ni and Co. J. Electron. Mater. 51, 5744–5758 (2022). https://doi.org/10.1007/s11664-022-09860-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09860-9

Keywords

  • Thermoelectric material
  • contact
  • chemical deposition
  • electrochemical deposition
  • contact resistance
  • adhesion strength