Skip to main content
Log in

Performance Investigation of Source Delta-Doped Vertical Nanowire TFET

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, a source delta-doped vertical nanowire tunnel field-effect transistor is proposed, and its 2D simulations using the Silvaco ATLAS TCAD tool for ultralow-power applications are investigated. Because electron tunneling occurs in a direction parallel to the electric field at the source/channel interface, the ON-state current is higher. By incorporating a delta-doped layer in the source area, the OFF-state leakage current is further reduced. For various electrical parameters, the effects of changing the position of the delta-doped layer is investigated, as well as the effect of changing the doping concentration of the delta-doped layer and the device gate work function. It was possible to achieve a very high current ratio (ION/IOFF) of order ~ 1011 (with ION value 1.52 × 10–5 A/µm) with a very low average subthreshold slope of 18 mV/decade, and threshold voltage (VTH) of 0.57 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Availability of Data and Materials

Yes.

References

  1. F. D’Agostino and D. Quercia, Short-channel effects in MOSFETs, in Introduction to VLSI Design (EECS 467), 70, pp. 71–72

  2. U.E. Avci, D.H. Morris, and I.A. Young, Tunnel field-effect transistors: prospects and challenges. IEEE J. Electr. Devices Soc. 3, 88–95 (2015).

    Article  Google Scholar 

  3. Y. Kamata, High-k/Ge MOSFETs for future nanoelectronics. Mater. Today 11, 30–38 (2008).

    Article  Google Scholar 

  4. S. Salahuddin and S. Datta, in IEEE International Electron Devices Meeting (IEEE, 2008), pp. 1–4

  5. S. Sahay and M.J. Kumar, Controlling the drain side tunneling width to reduce ambipolar current in tunnel FETs using heterodielectric BOX. IEEE Trans. Electron Devices 62, 3882–3886 (2015).

    Article  Google Scholar 

  6. J. Singh, K. Ramakrishnan, S. Mookerjea, S. Datta, N. Vijaykrishnan, and D. Pradhan, A novel Si-tunnel FET based SRAM design for ultra low-power 0.3 V VDD applications, in 2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC) (IEEE, 2010), pp. 181–186

  7. C.W. Lee, A.N. Nazarov, I. Ferain, N.D. Akhavan, R. Yan, P. Razavi, R. Yu, R.T. Doria, and J.P. Colinge, Low subthreshold slope in junctionless multigate transistors. Appl. Phys. Lett. 96, 102106 (2010).

    Article  Google Scholar 

  8. S.O. Koswatta, M.S. Lundstrom, M.P. Anantram, and D.E. Nikonov, Simulation of phonon-assisted band-to-band tunneling in carbon nanotube field-effect transistors. Appl. Phys. Lett. 87, 253107 (2010).

    Article  Google Scholar 

  9. P.F. Guo, L.T. Yang, Y. Yang, L. Fan, G.Q. Han, G.S. Samudra, and Y.C. Yeo, Tunneling field-effect transistor: effect of strain and temperature on tunneling current. IEEE Electron. Device Lett. 30, 981–998 (2009).

    Article  CAS  Google Scholar 

  10. O.M. Nayfeh, C.N. Chleirigh, J. Hennessy, L. Gomez, J.L. Hoyt, and D.A. Antoniadis, Design of tunneling field-effect transistors using strained-silicon/strained-germanium type-II staggered heterojunctions. IEEE Electron. Device Lett. 29, 1074–1077 (2008).

    Article  CAS  Google Scholar 

  11. A. Singh, S. Chaudhary, S.M. Sharma, and C.K. Sarkar, Improved drive capability of silicon nano tube tunnel FET using halo implantation. SILICON 12, 1–7 (2020).

    Article  Google Scholar 

  12. S. Winitzki, Cosmological particle production and the precision of the WKB approximation. Phys. Rev. D. 72, 104011 (2005).

    Article  Google Scholar 

  13. C.M. Bender, and S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers (Berlin: Springer, 1999), pp. 549–568.

    Book  Google Scholar 

  14. P.K. Dubey and B.K. Kaushik, T-shaped III-V heterojunction tunneling field-effect transistor. IEEE Trans. Electron Devices 64, 3120–3125 (2017).

    Article  CAS  Google Scholar 

  15. S.W. Kim, J.H. Kim, T.-J. King Liu, W.Y. Choi, and B.-G. Park, Demonstration of L-shaped tunnel field-effect transistors. IEEE Trans. Electron Devices 63, 1774–1778 (2016).

    Article  CAS  Google Scholar 

  16. A. Kumar, N.S. Vidhyadhiraja, and G.U. Kulkarni, Current distribution in conducting nanowire networks. J. Appl. Phys. 122, 045101 (2017).

    Article  Google Scholar 

  17. Silvaco, I., ATLAS user’s manual. Santa Clara, CA, Ver (2011)

  18. Z. Yang, Tunnel field-effect transistor with an L-shaped gate. IEEE Electron Device Lett. 37, 839–842 (2016).

    Article  CAS  Google Scholar 

  19. K. Vanlalawpuia and B. Bhowmick, Investigation of a Ge-source vertical TFET with delta-doped layer. IEEE Trans. Electron Devices 66, 4439–4445 (2019).

    Article  Google Scholar 

  20. H. El-Hajj, A. Denisenko, A. Bergmaier, G. Dollinger, M. Kubovic, and E. Kohn, Characteristics of boron δ-doped diamond for electronic applications. Diam. Relat. Mater. 17, 409–414 (2008).

    Article  CAS  Google Scholar 

  21. N. Kumar and A. Raman, Novel design approach of extended gate-on-source based charge-plasma vertical-nanowire TFET: proposal and extensive analysis. IEEE Trans. Nanotechnol. 19, 421–428 (2020).

    Article  CAS  Google Scholar 

  22. S. Dash, G.S. Sahoo, and G.P. Mishra, Improved cut-off frequency for cylindrical gate TFET using source delta doping. Procedia Technol. 25, 450–455 (2016).

    Article  Google Scholar 

  23. A. Ortiz-Conde, F.G. Sánchez, J.J. Liou, A. Cerdeira, M. Estrada, and Y. Yue, A review of recent MOSFET threshold voltage extraction methods. Microelectron. Reliab. 42, 583–596 (2002).

    Article  Google Scholar 

Download references

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Ranjan.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements) or nonfinancial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Research Involving Human Participants and/or Animals

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raman, A., Kumar, K.J., Kakkar, D. et al. Performance Investigation of Source Delta-Doped Vertical Nanowire TFET. J. Electron. Mater. 51, 5655–5663 (2022). https://doi.org/10.1007/s11664-022-09840-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09840-z

Keywords

Navigation