Skip to main content
Log in

C/Sb Superlattice-Like Films with High Thermal Stability and Low Power Consumption for Phase-Change Memory

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The physical properties and device electrical properties of superlattice-like C/Sb phase change films are investigated. Compared with Sb monolayer films, the superlattice-like C/Sb films have preferable thermal stability, including higher crystallization temperature, longer data life, and larger crystallization activation energy. As the thickness of the carbon layer increases, the band gap gradually increases. X-ray photoelectron spectroscopy results show that C-Sb bonds exist in the C/Sb superlattice-like films. X-ray diffraction and atomic force microscope results show that the addition of carbon inhibits the grain growth, making the grain size smaller and inhibiting the crystallization of Sb materials. Phase-change memory devices based on [C(6nm)/Sb(4nm)]8 superlattice-like films have smaller threshold voltages and lower power consumption compared to Sb films. In conclusion, C/Sb superlattice-like films have high thermal stability and low power consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig 7

Similar content being viewed by others

References

  1. Z. Tang, C. Liu, S. Zeng, X. Huang, L. Liu, J. Li, Y. Jiang, D.W. Zhang, and P. Zhou, Enhancement of Refresh Time in Quasi-Nonvolatile Memory by the Density of States Engineering. J. Semicond. 42, 024101 (2021).

    Article  Google Scholar 

  2. Y. Xu, Y. Hu, S. Sun, and T. Lai, Changes in Resistance and Bandgap of V2O5 and Ge2Sb2Te5 During Phase Transition. J. Electron. Mater. 50, 491 (2021).

    Article  CAS  Google Scholar 

  3. Z. Xiaoqin, Y. Hu, L. Yuan, Y. Sui, J. Xue, D. Shen, J. Zhang, S. Song, and Z. Song, Nitrogen-Doped Ge10Sb90 Phase Change Thin Films for High-Temperature Data Retention and High-Speed Application. J. Electron. Mater. 44, 3322 (2015).

    Article  Google Scholar 

  4. J. Zhao, Q. Liang, Y. Chen, S. Zhang, Z. Song, S. Song, Z. Ma, and L. Wu, Rhenium Doped Sb2Te Phase Change Material with Ultrahigh Thermal Stability and High Speed. J. Alloy Compd. 863, 158583 (2021).

    Article  CAS  Google Scholar 

  5. Z. Li, Y. Lu, M. Wang, X. Shen, X. Zhang, S. Song, and Z. Song, Controllable Multilevel Resistance State of Superlattice-Like GaSb/Ge2Te Films for Ultralong Retention Phase-Change Memory. J. Non-cryst. Solids 481, 110 (2018).

    Article  CAS  Google Scholar 

  6. L. Ruirui, W. Pengzhi, H. Zifang, Z. Jiwei, L. Xinyi, and L. Tianshu, Study of Crystallization and Thermal Stability of Superlattice-Like SnSb4-GeTe Thin Films. Thin Solid Films 625, 11 (2017).

    Article  Google Scholar 

  7. Z. Hua, H. Yifeng, Z. Xiaoqin, S. Yuemei, W. Fengfei, Z. Jianhao, S. Yongxing, and S. Zhitang, Rare Earth Doping Brings Thermal Stability Improvement in Zn0.15Sb0.85 Alloy for Phase Change Memory Application. J. Electron. Mater. 48, 4362 (2019).

    Article  Google Scholar 

  8. J. Xu, Y. Hu, and X. Zhu, Crystallization and electrical Conversion Behavior of Ge1Sb9/HfO2 Superlattice-Like Phase Change Films. Mater. Design 208, 109913 (2021).

    Article  CAS  Google Scholar 

  9. Z. Xiaoqin, Y. Hu, H. Zou, J. Zhang, Y. Sun, W. Wu, L. Yuan, L. Zhai, S. Song, and Z. Song, Si/Sb Superlattice-Like Thin Films for Ultrafast and Low Power Phase Change Memory Application. Scripta Mater. 121, 66 (2016).

    Article  Google Scholar 

  10. J.H. Kim, J.H. Park, and D.H. Ko, Effect of Selenium Doping on the Crystallization Behaviors of GeSb for Phase-Change Memory Applications. Thin Solid Films 653, 173 (2018).

    Article  CAS  Google Scholar 

  11. M. Putero, M.-V. Coulet, C. Muller, C. Baehtz, S. Raoux, and H.-Y. Cheng, Ge-Doped GaSb Thin Films with Zero Mass Density Change upon Crystallization for Applications in Phase Change Memories. Appl. Phys. Lett. 108, 101909 (2016).

    Article  Google Scholar 

  12. Z. Zhao, S. Hua, W. Wu, B. Shen, J. Zhai, T. Lai, S. Song, and Z. Song, Improvement of Phase Change Speed and Thermal Stability in Ge5Sb95/ZnSb Multilayer Thin Films for Phase Change Memory Application. Semicond. Sci. Tech. 34, 105022 (2019).

    Article  CAS  Google Scholar 

  13. T.C. Chong, L.P. Shi, R. Zhao, P.K. Tan, J.M. Li, H.K. Lee, X.S. Miao, A.Y. Du, and C.H. Tung, Phase Change Random Access Memory Cell with Superlattice-Like Structure. Appl. Phys. Lett. 88, 122114 (2006).

    Article  Google Scholar 

  14. Y.Z. Xu, X.D. Wang, W. Zhang, L. Schafer, J. Reindl, F. vom Bruch, Y.X. Zhou, V. Evang, J.J. Wang, V.L. Deringer, E. Ma, M. Wuttig, and R. Mazzarello, Materials Screening for Disorder-Controlled Chalcogenide Crystals for Phase-Change Memory Applications. Adv. Mater. 2006221, 1 (2021).

    Google Scholar 

  15. X. Guo, Y.F. Hu, Q.Q. Chou, T.S. Lai, R. Zhang, and X.Q. Zhu, Phase Change Behavior of Sn20Sb80/Si Nano-Composite Multilayer Thin Films. ECS J. Solid State Sc. 7, 647 (2018).

    Google Scholar 

  16. C. Peng, F. Rao, L. Wu, Z. Song, Y. Gu, D. Zhou, H. Song, P. Yang, and J. Chu, Homogeneous Phase W-Ge-Te Material with Improved Overall Phase-Change Properties for Future Nonvolatile Memory. Acta. Mater. 74, 49 (2014).

    Article  CAS  Google Scholar 

  17. X. Zhou, M. Xia, F. Rao, L. Wu, X. Li, Z. Song, S. Feng, and H. Sun, Understanding Phase-Change Behaviors of Carbon-Doped Ge2Sb2Te5 for Phase-Change Memory Application. ACS Appl. Mater. Inter. 6, 14207 (2014).

    Article  CAS  Google Scholar 

  18. Y.F. Hu, X. Feng, S. Li, T. Lai, S. Song, Z. Song, and J. Zhai, Superlattice-Like Ge8Sb92/Ge Thin Films for High-Speed and Low Power Consumption Phase Change Memory Application. Scripta Mater. 93, 4 (2014).

    Article  CAS  Google Scholar 

  19. W.H. Wu, Y.M. Sun, X.Q. Zhu, B. Shen, J.W. Zhai, and Z.X. Yue, Physical Properties and Structure Characteristics of Titanium-Modified Antimony-Selenium Phase Change Thin Film. Appl. Phys. Lett. 118, 081903 (2021).

    Article  CAS  Google Scholar 

  20. X. Shen, Y. Chen, Z. Wang, Y. Lu, and S. Dai, Improved Phase Change Behavior of Sb3Te Material by ZnSb Doping for Phase Change Memory. Appl. Phys. A. 119, 425 (2015).

    Article  CAS  Google Scholar 

  21. S. Gao, Y. Hu, L. Wang, and X. Zhu, Simultaneously Good Thermal Stability and Low Power Consumption for Sb/In48.9Sb15.5Te35.6 Multilayer Composite Film. J. Non-cryst. Solids 567, 120928 (2021).

    Article  CAS  Google Scholar 

  22. Y. Lu, Crystallization of Sb-Rich Sb55Te45 Alloy as an Ultra-Fast Phase Change Film. J. Mater. Sci-Mater. El. 32, 10491 (2021).

    Article  CAS  Google Scholar 

  23. Y. Lu, Z. Zhang, S. Song, X. Shen, G. Wang, L. Cheng, S. Dai, and Z. Song, Performance Improvement of Ge-Sb-Te Material by GaSb Doping for Phase Change Memory. Appl. Phys. Lett. 102, 241907 (2013).

    Article  Google Scholar 

  24. Y. Huang, L. Luo, J. Wang, Q. Zuo, Y. Yao, and W. Li, The Down-Conversion and Up-Conversion Photoluminescence Properties of Na0.5Bi0.5TiO3: Yb3+/Pr3+ Ceramics. J. Appl. Phys. 118, 044101 (2015).

    Article  Google Scholar 

  25. W. Wu, Z. Zhao, B. Shen, J. Zhai, S. Song, and Z. Song, Crystallization Characteristic and Scaling Behavior of Germanium Antimony Thin Films for Phase Change Memory. Nanoscale 10, 7228 (2018).

    CAS  Google Scholar 

  26. H. Borchert, E.V. Shevchenko, A. Robert, I. Mekis, and H. Weller, Determination of Nanocrystal Sizes: A Comparison of TEM, SAXS, and XRD Studies of Highly Monodisperse COPt3 Particles. Langmuir 21, 1931 (2005).

    Article  CAS  Google Scholar 

  27. V. Tallapally, D. Damma, S.R. Darmakkolla, Facile Synthesis of Size-Tunable Tin Arsenide Nanocrystals. Chem. Commun. (2018)

  28. Z. Wang, and Y. Lu, Thermal Stability Improvement of Sb-Si3N4 Composite Phase-Change Film by tunning Crystallization Mechanism. J. Alloy Compd. 863, 158720 (2021).

    Article  CAS  Google Scholar 

  29. H. Zou, Y. Hu, X. Zhu, and Z. Song, Simultaneously High Thermal Stability and Ultra-Fast Phase Change Speed Based on Samarium-Doped Antimony Thin Films. RSC Adv. 7, 31110 (2017).

    Article  Google Scholar 

  30. Y. Gu, S. Song, Z. Song, S. Bai, Y. Cheng, Z. Zhang, B. Liu, and S. Feng, Phase-Change Material Ge0.61Sb2Te for Application in High-Speed Phase Change Random Access Memory. Appl. Phys. Lett. 102, 824 (2013).

    Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (No. 12074152 and 11974008). Open Project of State Key Laboratory of Information Functional Materials (SKL2020). Postgraduate Research and Practice Innovation Program of Jiangsu University of Technology (No. XSJCX22_60).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoqin Zhu or Yifeng Hu.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, X., Zhu, X., Hu, Y. et al. C/Sb Superlattice-Like Films with High Thermal Stability and Low Power Consumption for Phase-Change Memory. J. Electron. Mater. 51, 5594–5600 (2022). https://doi.org/10.1007/s11664-022-09797-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09797-z

Keywords

Navigation