Skip to main content
Log in

The BS Nanotubes with High Carrier Mobility for Potential Photocatalytic Hydrolysis Applications: First-Principles Study

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

To explore the photocatalytic properties of BS, we have investigated the geometry, electronic structure, and carrier mobility of BS monolayer and single-walled nanotubes (SWNTs) using a first-principles study. The B-S and B-B bond lengths of SWNTs remain stable compared to the monolayer, and the strain energy and formation energy decrease with the increase of the diameter of the nanotube. The band gap of nanotubes is significantly reduced compared to that of the monolayer, and the transition from indirect to direct band gap occurs between monolayer to nanotubes which promotes rapid carrier migration while reducing electron-hole recombination. The band gap edge position of larger diameter BS nanotubes satisfies the photocatalytic hydrolysis redox potential. Notably, the electron mobility of the (60, 0) nanotube is 97.22 cm2 V−1 s−1 while the hole mobility of the nanotube is as high as 4684.61 cm2 V−1 s−1. The large value difference in carrier mobility could reduce the recombination of electrons and holes. Combined with the above calculations, we believe that the BS nanotubes have good photocatalytic performance and these BS nanotubes in photocatalytic hydrolysis should be very promising.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. D. Bahnemann, Photocatalytic Water Treatment: Solar Energy Applications. Sol. Energy 77, 445 (2004).

    Article  CAS  Google Scholar 

  2. S.S. Naik, S.J. Lee, S. Yeon, Y. Yu, and M.Y. Choi, Pulsed Laser-Assisted Synthesis of Metal and Nonmetal-Codoped ZnO for Efficient Photocatalytic Degradation of Rhodamine B Under Solar Light Irradiation. Chemosphere 274, 129782 (2021).

    Article  CAS  Google Scholar 

  3. E.J.S. Christy, A. Amalraj, A. Rajeswari, and A. Pius, Enhanced Photocatalytic Performance of Zr(IV) Doped ZnO Nanocomposite for the Degradation Efficiency of Different Azo Dyes. Environ. Chem. Ecotoxicol. 3, 31 (2021).

    Article  CAS  Google Scholar 

  4. C.-Z. Jin, Y. Yang, X.-A. Yang, S.-B. Wang, and W.-B. Zhang, Visible Photocatalysis of Cr(VI) at g/L Level in Si/N-TiO2 Nanocrystals Synthesized by One-Step Co-Hydrolysis Method. Chem. Eng. J. 398, 125641 (2020).

    Article  CAS  Google Scholar 

  5. X. Lu, G. Wang, S. Xie, J. Shi, W. Li, Y. Tong, and Y. Li, Efficient Photocatalytic Hydrogen Evolution Over Hydrogenated ZnO Nanorod Arrays. Chem. Commun. (Camb) 48, 7717 (2012).

    Article  CAS  Google Scholar 

  6. W.S. Koe, J.W. Lee, W.C. Chong, Y.L. Pang, and L.C. Sim, An Overview of Photocatalytic Degradation: Photocatalysts, Mechanisms, and Development of Photocatalytic Membrane. Environ. Sci. Pollut. Res. Int. 27, 2522 (2020).

    Article  CAS  Google Scholar 

  7. Q. Wang, Z. Xu, Y. Cao, Y. Chen, X. Du, Y. Yang, and Z. Wang, Two-Dimensional Ultrathin Perforated Co3O4 Nanosheets Enhanced PMS-Activated Selective Oxidation of Organic Micropollutants in Environmental Remediation. Chem. Eng. J. 427, 131953 (2022).

    Article  CAS  Google Scholar 

  8. M. Yu, J. Wang, L. Tang, C. Feng, H. Liu, H. Zhang, B. Peng, Z. Chen, and Q. Xie, Intimate Coupling of Photocatalysis and Biodegradation for Wastewater Treatment: Mechanisms, Recent Advances and Environmental Applications. Water Res. 175, 115673 (2020).

    Article  CAS  Google Scholar 

  9. A. Fujishima and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 238, 37 (1972).

    Article  CAS  Google Scholar 

  10. K.M. Emran, Catalytic Activity of Strontium Modified TiO2 Nanotubes for Hydrogen Evolution Reaction. Int. J. Electrochem. Sci. 15, 4218 (2020).

    Article  CAS  Google Scholar 

  11. X. Zhang, C. Jia, and J. Liu, Guanidine Carbonate Assisted Supramolecular Self-Assembly for Synthesizing Porous g-C3N4 for Enhanced Photocatalytic Hydrogen Evolution. Int. J. Hydrogen Energy 46, 19939 (2021).

    Article  CAS  Google Scholar 

  12. X. Liu, Y. Guo, P. Wang, Q. Zhang, Z. Wang, Y. Liu, Z. Zheng, H. Cheng, Y. Dai, and B. Huang, The Synergy of Thermal Exfoliation and Phosphorus Doping in g-C3N4 for Improved Photocatalytic H2 Generation. Int. J. Hydrogen Energy 46, 3595 (2021).

    Article  CAS  Google Scholar 

  13. A. Harvey, C. Backes, Z. Gholamvand, D. Hanlon, D. McAteer, H.C. Nerl, E. McGuire, A. Seral-Ascaso, Q.M. Ramasse, N. McEvoy, S. Winters, N.C. Berner, D. McCloskey, J.F. Donegan, G.S. Duesberg, V. Nicolosi, and J.N. Coleman, Preparation of Gallium Sulfide Nanosheets by Liquid Exfoliation and Their Application as Hydrogen Evolution Catalysts. Chem. Mater. 27, 3483 (2015).

    Article  CAS  Google Scholar 

  14. S. Demirci, N. Avazlı, E. Durgun, and S. Cahangirov, Structural and Electronic Properties of Monolayer Group III Monochalcogenides. Phys. Rev. B 95, 115409 (2017).

    Article  Google Scholar 

  15. W. Jie, X. Chen, D. Li, L. Xie, Y.Y. Hui, S.P. Lau, X. Cui, and J. Hao, Layer-Dependent Nonlinear Optical Properties and Stability of Non-Centrosymmetric Modification in Few-Layer GaSe Sheets. Angew. Chem. Int. Ed. Engl. 54, 1185 (2015).

    Article  CAS  Google Scholar 

  16. M.M. Obeid, A. Bafekry, S. Ur Rehman, and C.V. Nguyen, A Type-II GaSe/HfS2 van der Waals Heterostructure as Promising Photocatalyst with High Carrier Mobility. Appl. Surf. Sci. 534, 147607 (2020).

    Article  CAS  Google Scholar 

  17. Z. Wang, M. Safdar, M. Mirza, K. Xu, Q. Wang, Y. Huang, F. Wang, X. Zhan, and J. He, High-Performance Flexible Photodetectors Based on GaTe Nanosheets. Nanoscale 7, 7252 (2015).

    Article  CAS  Google Scholar 

  18. W. Feng, X. Zhou, W.Q. Tian, W. Zheng, and P. Hu, Performance Improvement of Multilayer InSe Transistors with Optimized Metal Contacts. Phys. Chem. Chem. Phys. 17, 3653 (2015).

    Article  CAS  Google Scholar 

  19. L. Li, C. Zhao, L. Zhang, and Y. Zhu, γ-GeSe Nanotube: A One-Dimensional Semiconductor with High Carrier Mobility Potential for Photocatalytic Water Splitting. J. Mater. Chem. C 9, 15158 (2021).

    Article  CAS  Google Scholar 

  20. Q. Lei, S. Yang, D. Ding, J. Tan, J. Liu, and R. Chen, Local-Interaction-Field-Coupled Semiconductor Photocatalysis: Recent Progress and Future Challenges. J. Mater. Chem. A 9, 2491 (2021).

    Article  CAS  Google Scholar 

  21. Z. Ma, W. Liu, W. Yang, W. Li, and B. Han, Temperature Effects on Redox Potentials and Implications to Semiconductor Photocatalysis. Fuel 286, 119490 (2021).

    Article  CAS  Google Scholar 

  22. L. Li, C. Zhao, L. Zhang, and Y. Zhu, γ-GeSe Nanotubes: A One-Dimensional Semiconductor with High Carrier Mobility Potential for Photocatalytic Water Splitting. J. Mater. Chem. C 9, 15158 (2021).

    Article  CAS  Google Scholar 

  23. P. Yang, J. Wang, G. Yue, R. Yang, P. Zhao, L. Yang, X. Zhao, and D. Astruc, Constructing Mesoporous g-C3N4/ZnO Nanosheets Catalyst for Enhanced Visible-Light Driven Photocatalytic Activity. J. Photochem. Photobiol. A 388, 112169 (2020).

    Article  CAS  Google Scholar 

  24. X. Pang, N. Skillen, N. Gunaratne, D.W. Rooney, and P.K.J. Robertson, Removal of Phthalates from Aqueous Solution by Semiconductor Photocatalysis: A Review. J. Hazard. Mater. 402, 123461 (2021).

    Article  CAS  Google Scholar 

  25. S.-J. Young, and Y.-L. Chu, Characteristics of Field Emitters on the Basis of Pd-Adsorbed ZnO Nanostructures by Photochemical Method. ACS Appl. Nano Mater. 4, 2515 (2021).

    Article  CAS  Google Scholar 

  26. T.V.H. Luu, M.D. Luu, N.N. Dao, V.T. Le, H.T. Nguyen, and V.D. Doan, Immobilization of C/Ce-Codoped ZnO Nanoparticles on Multi-Walled Carbon Nanotubes for Enhancing Their Photocatalytic Activity. J. Dispers. Sci. Technol. 42, 1311 (2021).

    Article  CAS  Google Scholar 

  27. R. Gang, L. Xu, Y. Xia, J. Cai, L. Zhang, S. Wang, and R. Li, Fabrication of MoS2 QDs/ZnO Nanosheet 0D/2D Heterojunction Photocatalysts for Organic Dyes and Gaseous Heavy Metal Removal. J. Colloid Interface Sci. 579, 853 (2020).

    Article  CAS  Google Scholar 

  28. S. Piskunov, O. Lisovski, Y.F. Zhukovskii, P.N. D’Yachkov, R.A. Evarestov, S. Kenmoe, and E. Spohr, First-Principles Evaluation of the Morphology of WS2 Nanotubes for Application as Visible-Light-Driven Water-Splitting Photocatalysts. ACS Omega 4, 1434 (2019).

    Article  CAS  Google Scholar 

  29. Y. Zhao, X. Li, H. Li, and L. He, Modulation of the Electronic Properties and Photocatalytic Performance of Black Phase Monolayer GeSe by Noble Metal Doping. New J. Chem. 45, 15378 (2021).

    Article  CAS  Google Scholar 

  30. K. Ren, Y. Luo, S. Wang, J.P. Chou, J. Yu, W. Tang, and M. Sun, A van der Waals Heterostructure Based on Graphene-like Gallium Nitride and Boron Selenide: A High-Efficiency Photocatalyst for Water Splitting. ACS Omega 4, 21689 (2019).

    Article  CAS  Google Scholar 

  31. Y. Zhang, Y. Zhao, Z. Xiong, T. Gao, B. Gong, P. Liu, J. Liu, and J. Zhang, Elemental Mercury Removal by I-Doped Bi2WO6 with Remarkable Visible-Light-Driven Photocatalytic Oxidation. Appl. Catal. B 282, 119534 (2021).

    Article  CAS  Google Scholar 

  32. M. Zhang, X. Chen, X. Jiang, J. Wang, L. Xu, J. Qiu, W. Lu, D. Chen, and Z. Li, Activate Fe3S4 Nanorods by Ni Doping for Efficient Dye-Sensitized Photocatalytic Hydrogen Production. ACS Appl. Mater. Interfaces 13, 14198 (2021).

    Article  CAS  Google Scholar 

  33. H. Yang, A Short Review on Heterojunction Photocatalysts: Carrier Transfer Behavior and Photocatalytic Mechanisms. Mater. Res. Bull. 142, 111406 (2021).

    Article  CAS  Google Scholar 

  34. Z. Ren, X. Li, L. Guo, J. Wu, Y. Li, W. Liu, P. Li, Y. Fu, and J. Ma, Facile Synthesis of ZnO/ZnS Heterojunction Nanoarrays for Enhanced Piezo-Photocatalytic Performance. Mater. Lett. 292, 129635 (2021).

    Article  CAS  Google Scholar 

  35. Y. Zhu, L. Zhang, L. Li, C. Zhao, J. Li, and J. Zhang, Explaining Improved Photocatalytic Activity of Double-Walled TiO2 Nanotube: A Hybrid Density Functional Calculation. Appl. Surf. Sci. 570, 151021 (2021).

    Article  CAS  Google Scholar 

  36. L. Ju, J. Qin, L. Shi, G. Yang, J. Zhang, and L. Sun, Rolling the WSSe Bilayer into Double-Walled Nanotube for the Enhanced Photocatalytic Water-Splitting Performance. Nanomaterials (Basel) 11, 705 (2021).

    Article  CAS  Google Scholar 

  37. H. Li, H. Zhang, Y. Xiong, L. Ye, and W. Li, Van der Waals Heterostructures Based on SiC-BS: A Promoted Photocatalytic Properties for Water Splitting. Phys. Lett. A 410, 127514 (2021).

    Article  CAS  Google Scholar 

  38. R. Dovesi, R. Orlando, A. Erba, C.M. Zicovich-Wilson, B. Civalleri, S. Casassa, L. Maschio, M. Ferrabone, M. De La Pierre, P. D’Arco, Y. Noël, M. Causà, M. Rérat, and B. Kirtman, CRYSTAL14: A Program for the ab initio Investigation of Crystalline Solids. Int. J. Quantum Chem. 114, 1287 (2014).

    Article  CAS  Google Scholar 

  39. H.J. Monkhorst, and J.D. Pack, Special Points for Brillouin-Zone Integrations. Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  40. D. Vilela Oliveira, J. Laun, M.F. Peintinger, and T. Bredow, BSSE-Correction Scheme for Consistent Gaussian Basis Sets of Double- and Triple-Zeta Valence with Polarization Quality for Solid-State Calculations. J. Comput. Chem. 40, 2364 (2019).

    Article  CAS  Google Scholar 

  41. K. Ren, J. Yu, and W. Tang, Two-Dimensional ZnO/BSe van der Waals Heterostructure used as a Promising Photocatalyst for Water Splitting: A DFT Study. J. Alloys Compd. 812, 152049 (2020).

    Article  CAS  Google Scholar 

  42. H. Li, L. Ye, Y. Xiong, H. Zhang, S. Zhou, and W. Li, Tunable Electronic Properties of BSe-MoS2/WS2 Heterostructures for Promoted Light Utilization. Phys. Chem. Chem. Phys. 23, 10081 (2021).

    Article  CAS  Google Scholar 

  43. M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, and N.S. Lewis, Solar Water Splitting Cells. Chem. Rev. 110, 6446 (2010).

    Article  CAS  Google Scholar 

  44. X. Lv, W. Wei, Q. Sun, F. Li, B. Huang, and Y. Dai, Two-Dimensional Germanium Monochalcogenides for Photocatalytic Water Splitting with High Carrier Mobility. Appl. Catal. B 217, 275 (2017).

    Article  CAS  Google Scholar 

  45. Y. Cai, G. Zhang, and Y.W. Zhang, Polarity-Reversed Robust Carrier Mobility in Monolayer MoS2 Nanoribbons. J. Am. Chem. Soc. 136, 6269 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Natural Science Foundation of Xinjiang, China (Grant No. 2022D01C04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Long Zhang or Yingtao Zhu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Li, L., Zhang, L. et al. The BS Nanotubes with High Carrier Mobility for Potential Photocatalytic Hydrolysis Applications: First-Principles Study. J. Electron. Mater. 51, 6002–6010 (2022). https://doi.org/10.1007/s11664-022-09794-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09794-2

Keywords

Navigation