Skip to main content
Log in

Improving the Goodness-of-Fit of Permeability Spectra and Application in Garnet Ferrite

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The fitting method of permeability spectra was improved and then applied to pure phase polycrystalline garnet ferrites \({\text{Bi}}_{x} {\text{Ca}}_{1.4} {\text{Y}}_{1.6 - x} {\text{Fe}}_{4.1} {\text{Zr}}_{0.4} {\text{V}}_{0.5} {\text{O}}_{12} \;\left( {x = 0.3 - 1.5} \right)\), which were synthesized by a conventional solid-state reaction. The structural analysis of the samples was characterized by x-ray diffraction and scanning electron microscopy, and the results confirm that a single phase of garnet structure is formed in the prepared samples. The improved method gives more accurate fitting at both low- and high-frequency regions. At low frequency, it shows more significant features from the resonance of domain wall displacement. Near the cutoff frequency, the improved method gives closer fitting to Snoek’s limit curve. The fitting results show that the main magnetization process is from spin rotation, and a distinct peak corresponding to domain wall resonance is observed at low frequency, which is in agreement with the experimental data. In addition, the spin rotation components obtained by the improved method are closer to Snoek’s limit in the range close to the cutoff frequency. The improved fitting permeability spectra could be beneficial to understand the dynamic magnetization of magnetic materials in more detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T. Nakamura, T. Miyamoto, and Y. Yamada, Complex Permeability Spectra of Polycrystalline Li-Zn Ferrite and Application to EM-Wave Absorber. J. Magn. Magn. Mater. 256, 340 (2003).

    Article  CAS  Google Scholar 

  2. T. Nakamura and Tatsuya, Snoek’s Limit in High-Frequency Permeability of Polycrystalline Ni-Zn, Mg-Zn, and Ni-Zn-Cu Spinel Ferrites. J. Appl. Phys. 88, 348 (2000).

    Article  CAS  Google Scholar 

  3. G.T. Rado, Magnetic Spectra of Ferrites. Rev. Mod. Phys. 25, 1 (1953).

    Article  Google Scholar 

  4. S.A. Doi, D.P. Paul, M.A. Hakim, S. Akhter, and F. Lslam, Microstructure and Complex Permeability Spectra of Polycrystalline Cu-Zn Ferrites. J. Sci. Res. 4, 551 (2012).

    Article  Google Scholar 

  5. J. Jankovskis, N. Ponomarenko, and D. Stepins, Frequency Dependence of Complex Permeability of Polycrystalline Ferrites Based on the Realities of Microstructure. Key. Eng. Mater. 2253, 507 (2013).

    Article  Google Scholar 

  6. T. Tsutaoka, Frequency Dispersion of Complex Permeability in Mn-Zn and Ni-Zn Spinel Ferrites and their Composite Materials. J. Appl. Phys. 93, 2789 (2003).

    Article  CAS  Google Scholar 

  7. Takanori, Tsutaoka, and Teruhiro, Permeability Spectra of Yttrium iron Garnet and its Granular Composite Materials under dc Magnetic Field. J. Appl. Phys. 110, 53909 (2011).

    Article  Google Scholar 

  8. J. Wang, Z. Xue, S. Song, and H. Sun, Magnetic Properties and Loss Separation Mechanism of FeSi soft Magnetic Composites with In situ NiZn-Ferrite Coating. J. Mater. Sci. Mater. Electron. 32, 1 (2021).

    CAS  Google Scholar 

  9. T. Tsutaoka, K. Fukuyama, H. Kinoshita, and T. Kasagi, Negative Permittivity and Permeability Spectra of Cu/yttrium Iron Garnet Hybrid Granular Composite Materials in the Microwave Frequency Range. Appl. Phys. Lett. 103, 77 (2013).

    Article  Google Scholar 

  10. Z.B. Xu, G.W. Wang, J.H. Cui, C. Liu, W.L. Li, and T. Wang, Co Ion-Substituted Dielectric–Magnetic Properties of BaZn2-xCoxFe16O27 for High-Frequency and Miniature Antennas. J. Mater. Sci. Mater. Electron. 33, 2765 (2022).

    Article  CAS  Google Scholar 

  11. Q. Li, Y. Chen, L. Li, K. Qian, and V.G. Harris, Suppressed Domain Wall Damping in Planar BaM Hexaferrites for Miniaturization of Microwave Devices. J. Magn. Magn. Mater. 514, 167172 (2020).

    Article  CAS  Google Scholar 

  12. C. Fu, W. Xian, and Z. Feng, Magnetic Spectra and RICHTER after Effect Relaxation in CexY3−xFe5O12 Ferrites. AIP Adv. 6, 055918 (2016).

    Article  Google Scholar 

  13. H. Wijn and D. Van, A Richter Type After Effect in Ferrites Containing Ferrous and Ferric Ions. Rev. Mod. Phys. 25, 98 (1953).

    Article  CAS  Google Scholar 

  14. T. Nakamura, Low-Temperature Sintering of Ni-Zn-Cu Ferrite and its Permeability Spectra. J. Magn. Magn. Mater. 168, 285 (1997).

    Article  CAS  Google Scholar 

  15. G.T. Rado, R.W. Wright, and W.H. Emerson, Ferromagnetism at Very High Frequencies. III. Two Mechanisms of Dispersion in a Ferrite. Phys. Rev. 80, 273 (1950).

    Article  Google Scholar 

  16. J.B. Birks, Magnetic Spectra. Proc. Inst. Electr. Eng. Part B. 104, 179 (2010).

    Google Scholar 

  17. S.E. Harrison, C.J. Kriessman, and S.R. Pollack, Magnetic Spectra of Manganese Ferrites. Phys. Rev. 110, 844 (1958).

    Article  CAS  Google Scholar 

  18. G.F. Dionne, Magnetic Oxides (Boston: Springer, 2009), pp. 318–339.

    Book  Google Scholar 

  19. G.F. Dionne, Magnetic Relaxation and Anisotropy Effects on high-Frequency Permeability. IEEE Trans. Magn. 39, 3121 (2003).

    Article  CAS  Google Scholar 

  20. Y.J. Wu, C. Yu, and X.M. Chen, Magnetic and Magnetodielectric Properties of Bi-Substituted Yttrium Iron Garnet Ceramics. J. Magn. Magn. Mater. 324, 3334 (2012).

    Article  CAS  Google Scholar 

  21. S. Hua, H. Zhang, X. Tang, and Y. Jing, Influence of Microstructure on Permeability Dispersion and Power Loss of NiZn Ferrite. J. Appl. Phys. 103, 160 (2008).

    Google Scholar 

  22. P. Agarwal, H. Khanduri, and J. Link, Structural, Microstructural, and Magnetic Studies of Y3Fe5-xNixO12 Garnet Nanoparticles. Ceram. Int. 46, 21039 (2020).

    Article  CAS  Google Scholar 

  23. N. Jia, H.W. Zhang, J. Li, Y. Liao, C. Liu, and V.G. Harris, Polycrystalline Bi Substituted YIG Ferrite Processed via Low Temperature Sintering. J. Alloys Compd. 695, 931 (2016).

    Article  Google Scholar 

  24. A.N. Lagarkov, K.N. Rozanov, N.A. Simonov, and S.N. Starostenko, Microwave Permeability of Magnetic Films (Boston: Springer, 2006), pp. 417–418.

    Google Scholar 

Download references

Acknowledgments

This research is funded by the National Natural Science Foundation of China under Grant Nos. 61734002, 62171079 and 62171096, the Natural Science Foundation of Sichuan Province (No. 2022NSFSC0041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Zhong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Wen, T., Li, J. et al. Improving the Goodness-of-Fit of Permeability Spectra and Application in Garnet Ferrite. J. Electron. Mater. 51, 5100–5109 (2022). https://doi.org/10.1007/s11664-022-09739-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09739-9

Keywords

Navigation