Skip to main content
Log in

Grain Size Dependence of the Thermoelectric Performance in Cu2.98Co0.02SbSe4

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Ternary Cu3SbSe4 thermoelectric material with a diamond-like structure exhibits good thermoelectric performance in the middle-temperature region. In this study, Cu2.98Co0.02SbSe4 material with intrinsically low thermal conductivity was prepared by a melting–ball milling–hot pressing process. The maximum zT value for the Cu2.98Co0.02SbSe4 sample was 0.7 at 650 K, which was about 190% higher than that of the pristine sample. The improvement in thermoelectric performance was ascribed to the realization of multi-scale features induced by ball milling. It was found that multiple scattering centers of phonons were formed via interfacial engineering, including dislocations, nano-holes and grain boundaries, which offers an applicable pathway for the reduction of lattice thermal conductivity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Reference

  1. D. Ben-Ayoun, and Y. Gelbstein, Electronic properties of co-doped nonstoichiometric germanium telluride. Intermetallics 131, 107118 (2021).

    Article  CAS  Google Scholar 

  2. H.R. William, R.M. Ambrosi, and K. Chen, Spark plasma sintered bismuth telluride-based thermoelectric materials incorporating dispersed boron carbide. J. Alloy. Compd. 626, 368 (2015).

    Article  CAS  Google Scholar 

  3. X. Shi, X. Ai, Q. Zhang, X. Lu, S. Gu, L. Su, and L.W. Jiang, Enhanced thermoelectric properties of hydrothermally synthesized n-type Se&Lu-codoped Bi2Te3. J. Adv. Ceram. 9, 424 (2020).

    Article  CAS  Google Scholar 

  4. J. Jung, and I. Kim, Synthesis and thermoelectric properties of n-Type Mg2Si. Electron. Mater. Lett. 6, 187–191 (2010).

    Article  CAS  Google Scholar 

  5. P.C. Wei, C.N. Liao, H.J. Wu, D. Yang, J. He, G.V. Biesold-McGee, S. Liang, W.T. Yen, X. Tang, J.W. Yeh, Z. Lin, and J.H. He, Thermodynamic routes to ultralow thermal conductivity and high thermoelectric performance. Adv. Mater. 32, 1906457 (2020).

    Article  CAS  Google Scholar 

  6. J. He, J.T. Xu, X.J. Tan, G.Q. Liu, H.Z. Shao, and Z. Liu, Synthesis of SnTe/AgSbSe2 nanocomposite as a promising lead-free thermoelectric material. J. Materiomics 2, 165–171 (2016).

    Article  Google Scholar 

  7. J. Park, and Y. Xia, Optimal band structure for thermoelectrics with realistic scattering and bands. Npj. Comput. Mater. 7, 1–9 (2021).

    Article  CAS  Google Scholar 

  8. C. Chang, M. Wu, D. He, Y. Pei, C.F. Wu, and X. Wu, 3D charge and 2D phonon transports leading to high out-of-plane zT in n-type SnSe crystals. Science 360, 778–783 (2018).

    Article  CAS  Google Scholar 

  9. Q. Zhang, Q. Song, X. Wang, J. Sun, Q. Zhu, K. Dahal, X. Lin, F. Cao, J. Zhou, and S. Chen, Deep defect level engineering: a strategy of optimizing the carrier concentration for high thermoelectric performance. Energy Environ. Sci. 11, 933–940 (2018).

    Article  CAS  Google Scholar 

  10. X. Su, S. Hao, T.P. Bailey, S. Wang, I. Hadar, G. Tan, T.B. Song, Q. Zhang, C. Uher, and C. Wolverton, Weak electron phonon coupling and deep level impurity for high thermoelectric performance Pb1−xGaxTe. Adv. Energy Mater. 8, 1800659 (2018).

    Article  CAS  Google Scholar 

  11. J. Fan, X. Huang, F. Liu, L. Deng, and G. Chen, Feasibility of using chemically exfoliated SnSe nanobelts in constructing flexible SWCNTs-based composite films for high-performance thermoelectric applications. Compos. Commun. 24, 100612 (2021).

    Article  Google Scholar 

  12. M. Ozen, M. Yahyaoglu, and C. Candolfi, Enhanced thermoelectric performance in Mg3+xSb1.5Bi0.49Te0.01 via engineering microstructure through melt-centrifugation. J. Mater. Chem. 9, 1733–1742 (2021).

    Article  CAS  Google Scholar 

  13. F. Yang, J. Wu, A. Suwardi, Y. Zhao, B. Liang, J. Jiang, and J. Lu, Gate-tunable polar optical phonon to piezoelectric scattering in few-layer Bi2O2Se for high-performance thermoelectrics. Adv. Mater. 33, 2004786 (2021).

    Article  CAS  Google Scholar 

  14. S.A. Khandy, and J.D. Chai, Strain engineering of electronic structure, phonon, and thermoelectric properties of p-type half-Heusler semiconductor. J. Alloy. Compd. 850, 156615 (2021).

    Article  CAS  Google Scholar 

  15. K. Biswas, J. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012).

    Article  CAS  Google Scholar 

  16. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, and D. Vashaee, High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008).

    Article  CAS  Google Scholar 

  17. J. Martin, L. Wang, L. Chen, and G.S. Nolas, Enhanced Seebeck coefficient through energy-barrier scattering in PbTe nanocomposites. Phys. Rev. B 79, 115311 (2009).

    Article  CAS  Google Scholar 

  18. S.I. Kim, K.H. Lee, H.A. Mun, H.S. Kim, S.W. Hwang, J.W. Roh, D.J. Yang, W.H. Shin, X.S. Li, and Y.H. Lee, Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 348, 109–114 (2015).

    Article  CAS  Google Scholar 

  19. X. Meng, Z. Liu, B. Cui, D. Qin, H. Geng, W. Cai, L. Fu, J. He, and Z. Ren, Grain boundary engineering for achieving high thermoelectric performance in n-type skutterudites. Adv. Energy Mater. 7, 1602582 (2017).

    Article  CAS  Google Scholar 

  20. T. Zhu, C. Fu, H. Xie, Y. Liu, and X. Zhao, High efficiency half-Heusler thermoelectric materials for energy harvesting. Adv. Energy Mater. 5, 1500588 (2015).

    Article  CAS  Google Scholar 

  21. G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R.W. Gould, D.C. Cuff, M.Y. Tang, M.S. Dresselhaus, G. Chen, and Z. Ren, Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano. Lett. 8, 4670–4674 (2008).

    Article  CAS  Google Scholar 

  22. W.B. Qiu, H. He, Z. Wang, Q. Hu, X.D. Cui, Z.G. Wang, Y. Zhang, L. Gu, L. Yang, Y.X. Sun, L.W. Zhao, L.Q. Chen, H. Deng, and J. Tang, Enhancing the figure of merit of n-type PbTe materials through multi-scale graphene induced interfacial engineering. Nano Today 39, 101176 (2021).

    Article  CAS  Google Scholar 

  23. H. Ming, C. Zhu, and X. Qin, Improved figure of merit of Cu2SnSe3 via band structure modification and energy-dependent carrier scattering. ACS. Appl. Mater. Inter. 12, 19693–19700 (2020).

    Article  CAS  Google Scholar 

  24. K. Gurukrishna, A. Rao, Z.Z. Jiang, and Y.K. Kuo, Enhancement of thermoelectric performance by tuning selenium content in the Cu2SnSe3 compound. Intermetallics. 122, 106803 (2020).

    Article  CAS  Google Scholar 

  25. H. Kim, S.K. Kihoi, and H.S. Lee, Point defects control in non-stoichiometric CuInTe2 compounds and its corresponding effects on the microstructure and thermoelectric properties. J. Alloy. Compd. 869, 159381 (2021).

    Article  CAS  Google Scholar 

  26. C. Wang, Q. Ma, and H. Xue, Tetrahedral distortion and thermoelectric performance of the Ag-substituted CuInTe2 chalcopyrite compound. ACS. Appl. Energ. Mater. 3, 11015–11023 (2020).

    Article  CAS  Google Scholar 

  27. F.J. Fan, and Y. Xiu, Large-scale colloidal synthesis of non-stoichiometric Cu2ZnSnSe4 nanocrystals for thermoelectric applications. Adv. Mater. 24, 6158–6163 (2012).

    Article  CAS  Google Scholar 

  28. Y. Dong, H. Wang, and G.S. Nolas, Synthesis and thermoelectric properties of Cu excess Cu2ZnSnSe4. Phys. Status. Solidi-R. 8, 61–64 (2014).

    Article  CAS  Google Scholar 

  29. J.M. Li, D. Li, C.J. Song, L. Wang, H.X. Xin, J. Zhang, and X.Y. Qin, Realized high power factor and thermoelectric performance in Cu3SbSe4. Intermetallics 109, 68–73 (2019).

    Article  CAS  Google Scholar 

  30. Y. Liu, G. Gregorio, and S. Ortega, Solution-based synthesis and processing of Sn and Bi-doped Cu3SbSe4 nanocrystals, nanomaterials and ring-shaped thermoelectric generators. J. Mater. Chem. A 5, 2592–2602 (2017).

    Article  CAS  Google Scholar 

  31. T.R. Wei, H. Wang, Z. Gibbs, C. Wu, G. Snyder, and J. Li, Thermoelectric properties of Sn doped p-type Cu3SbSe4: a compound with large effective mass and small band gap. J. Mater. Chem. A 2, 13527–13533 (2014).

    Article  CAS  Google Scholar 

  32. T.H. Zou, X.Y. Qin, and D. Li, Enhanced thermoelectric performance of β-Zn4Sb3 based composites incorporated with large proportion of nanophase Cu3SbSe4. J. Alloy. Compd. 588, 568–572 (2014).

    Article  CAS  Google Scholar 

  33. W.Y. Wang, Y.P. Wang, L. Bo, and D.G. Zhao, Enhanced thermoelectric properties of Cu3SbSe4 via compositing with nano-SnTe. J. Alloy. Compd. 878, 160358 (2021).

    Article  CAS  Google Scholar 

  34. L. Bo, W. Wang, Y. Wang, L. Wang, and D. Zhao, Effects of Co doping on the thermoelectric properties of Cu3SbSe4 at moderate temperature. Mater. Sci. Forum. 993, 899–905 (2020).

    Article  Google Scholar 

  35. L. Zhao, J. Yang, Y. Zou, Y.J. Hu, G. Liu, H. Shao, and G. Qiao, Tuning Ag content to achieve high thermoelectric properties of Bi-doped p-type Cu3SbSe4-based materials. J. Alloy. Compd. 872, 159659 (2021).

    Article  CAS  Google Scholar 

  36. D. Li, R. Li, X. Qin, C. Song, H. Xin, L. Wang, J. Zhang, G. Guo, T. Zou, Y. Liu, and X. Zhu, Co-precipitation synthesis of nanostructured Cu3SbSe4 and its Sn-doped sample with high thermoelectric performance. Dalton. Trans. 43, 1888–1896 (2014).

    Article  CAS  Google Scholar 

  37. D. Zhang, J. Yang, Q. Jiang, Z. Zhou, X. Li, Y. Ren, J. Xin, A. Basit, X. He, W. Chu, and J. Hou, Simultaneous optimization of the overall thermoelectric properties of Cu3SbSe4 by band engineering and phonon blocking. J. Alloy. Compd. 724, 597–602 (2017).

    Article  CAS  Google Scholar 

  38. B. Wang, S. Zheng, Q. Wang, Z. Li, J. Li, Z. Zhang, Y. Wu, B. Zhu, S. Wang, Y. Chen, L. Chen, and Z. Chen, Synergistic modulation of power factor and thermal conductivity in Cu3SbSe4 towards high thermoelectric performance. Nano Energy 71, 104658 (2020).

    Article  CAS  Google Scholar 

  39. X.Y. Li, D. Li, H.X. Xin, J. Zhang, C.J. Song, and X.Y. Qin, Effects of bismuth doping on the thermoelectric properties of Cu3SbSe4 at moderate temperatures. J. Alloy. Compd. 561, 105–108 (2013).

    Article  CAS  Google Scholar 

  40. D. Zhang, J. Yang, Q. Jiang, L. Fu, Y. Xiao, Y. Luo, and Z. Zhou, Improvement of thermoelectric properties of Cu3SbSe4 compound by in doping. Mater. Design. 98, 150–154 (2016).

    Article  CAS  Google Scholar 

  41. S. Deng, X. Jiang, L. Chen, Z. Zhang, N. Qi, Y. Wu, and X. Tang, The reduction of thermal conductivity in Cd and Sn co-doped Cu3SbSe4-based composites with a secondary-phase CdSe. J. Mater. Sci. 56, 1–14 (2021).

    Article  Google Scholar 

  42. D. Li, H.W. Ming, J.M. Li, B. Jabar, W. Xu, J. Zhang, and X.Y. Qin, Ultralow thermal conductivity and extraordinary thermoelectric performance realized in co-doped Cu3SbSe4 by plasma spark sintering. Acs. Appl. Mater. Inter. 12, 3886–3892 (2020).

    Article  CAS  Google Scholar 

  43. Y. Li, X. Qin, D. Li, X. Li, Y. Liu, J. Zhang, and H. Xin, Transport properties and enhanced thermoelectric performance of aluminum doped Cu3SbSe4. Rsc. Adv. 5, 31399–31403 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51772132), Shandong Province Higher Educational Youth Innovative Science and Technology Program (2019KJA018), and Natural Science Foundation of Shandong Province (ZR2019MEM019). The authors would like to thank Yanzhong Pei Group at Tongji University for the partial measurement of TE properties.

Author information

Authors and Affiliations

Authors

Contributions

BL: conceptualization, methodology, writing—original draft, investigation. WL: data curation. HY: validation. LF: investigation, resources. SL: investigation. ZR: data curation. ZM: funding acquisition. ZD: writing—review and editing, supervision, funding acquisition, investigation.

Corresponding author

Correspondence to Degang Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bo, L., Wang, L., Hou, Y. et al. Grain Size Dependence of the Thermoelectric Performance in Cu2.98Co0.02SbSe4. J. Electron. Mater. 51, 4846–4854 (2022). https://doi.org/10.1007/s11664-022-09718-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09718-0

Keywords

Navigation