Skip to main content
Log in

Investigation of the Microstructure and Electrical Performance of Ag/SnO2In2O3 Contacts with Nickel Addition Fabricated by Internal Oxidation

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Ag/SnO2In2O3 electrical contact materials with a fiber-like and/or microparticle structure were fabricated by internal oxidation using Ag-Sn-In-xNi (x = 0–1.5 wt.%) alloys as raw materials. The impact of Ni addition on the physical properties and electrical performance of the Ag/SnO2In2O3 materials was investigated. The samples were characterized by x-ray diffraction, scanning electron microscopy, and x-ray photoelectron spectroscopy, and the electrical performance was estimated by temperature rise behavior, anti-welding force, and AC-4 service life testing, respectively. The results show that the dual strengthening effect of homogeneous microparticles and hierarchical fiber-like structures clearly improved the physical properties, temperature rise, welding resistance, and AC-4 service life. In particular, the sample with 0.5 wt.% Ni content demonstrated excellent AC-4 electrical life performance compared with samples with Ni content of 0 wt.% and 1.5 wt.%, and traditional internally oxidized Ag/CdO materials. Therefore, this study clearly illustrates the influence of Ni addition in Ag/SnO2In2O3 electrical contact materials.

Graphical Abstract

Ag/SnO2In2O3 electrical contact materials with a fiber-like and/or microparticle structure were fabricated by internal oxidation using as-synthesized Ag-Sn-In-xNi (x = 0~1.5 wt.%) alloys as raw materials. The dual strengthening effects of a homogeneous fine gain structure and hierarchical fiber-like structure clearly improved their temperature rise, welding resistance, and AC-4 service life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. R. Holm, Electric Contacts (Berlin: Spring-Verlag, 1967), p. 290.

    Book  Google Scholar 

  2. K.H. Schroder, IEEE Trans. Compon. Hybrids Manuf. Technol. 10, 127 (1987).

    Article  Google Scholar 

  3. S.C. Dev, O. Basak, and O.N. Mohanty, J. Mater. Sci. 28, 6540 (1993).

    Article  CAS  Google Scholar 

  4. A. Debnath, K. Deb, K. Sarkar, and B. Saha, J. Electron. Mater. 49, 5028 (2020).

    Article  CAS  Google Scholar 

  5. A. Debnath, K. Deb, K.L. Bhowmik, B. Saha, and A.C.S. Appl, Energy Mater. 3, 7772 (2020).

    CAS  Google Scholar 

  6. K. Sarkar, A. Debnath, K. Deb, A. Bera, and B. Saha, Energy 177, 203 (2019).

    Article  CAS  Google Scholar 

  7. Q. Wu, G.F. Xu, M. Yuan, and C.P. Wu, IEEE Trans. Compon. Packaging Manuf. Technol. 10, 845 (2020).

    Article  CAS  Google Scholar 

  8. P.C. Wingert, C.H. Leung, and I.E.E.E. Trans, Components. Hybrids Manuf. Technol. 10, 56 (1987).

    Article  Google Scholar 

  9. J. Swingler, and J.W. McBride, IEEE Trans. Compon. Packaging Manuf. Technol. 19, 404 (1996).

    Article  CAS  Google Scholar 

  10. V. Cosovic, A. Cosovic, N. Talijan, D. Zivkovic, and Z. Zivkovic, Sci. Sinter. 44, 245 (2012).

    Article  CAS  Google Scholar 

  11. F. Pons, M. Cherkaoui, I. Ilali, and S. Dominiak, J. Electron. Mater. 39, 7 (2010).

    Article  Google Scholar 

  12. O. Nilsson, F. Hauner, D. Jeannot, in Proceedings of the 50th IEEE Holm Conference on Electrical Contacts (2004), pp. 70.

  13. H.Y. Li, X.H. Wang, Z.D. Hu, and Y.F. Liu, J. Electron. Mater. 49, 4730 (2020).

    Article  CAS  Google Scholar 

  14. F. Hauner, D. Jeannot, K. McNeilly, J. Pinard, in Proceedings of the 46th IEEE Holm Conference on Electrical Contacts (2000), pp. 225.

  15. G.P. Ling, S.J. Wang, and L. Meng, Powder Metall. Technol. 23, 204 (2005).

    Google Scholar 

  16. K.H. Zhang, W.M. Guan, J.L. Sun, F. Lu, J.C. Chen, X.L. Zhou, and Y. Du, Rare Mrtal. Mat. Eng. 34, 924 (2005).

    CAS  Google Scholar 

  17. J. Zheng, S.L. Li, F.Q. Dou, and T.H. Li, Rare Met. 28, 19 (2009).

    Article  Google Scholar 

  18. X.Q. Qiao, L.J. Zhang, L.S. Chen, H. Yang, X.P. Fan, and Q.H. Shen, J. Funct. Mater. 44, 3502 (2013).

    CAS  Google Scholar 

  19. V. Cosovic, M. Pavlovic, A. Cosovic, P. Vulic, M. Premovic, D. Zivkovic, and N. Talijan, Sci. Sinter. 45, 173 (2013).

    Article  Google Scholar 

  20. M. Lungu, S. Gavriliu, T. Canta, M. Lucaci, and E. Enescu, J. Optoelectron. Adv. Mater. 8, 576 (2006).

    CAS  Google Scholar 

  21. S. Biyik, F. Arslan, and M. Aydin, J. Electron. Mater. 44, 9 (2015).

    Article  Google Scholar 

  22. M. Bruncko, I. Anzel, and A. Kneissl, Corros. Sci. 49, 1228 (2007).

    Article  CAS  Google Scholar 

  23. G. Schimmel, M. Rettenmayr, B. Kempf, and J. Fischer-Buehner, Oxid. Met. 70, 25 (2008).

    Article  CAS  Google Scholar 

  24. C.P. Wu, Q. Zhao, N.N. Li, H.S. Wang, D.Q. Yi, and W. Weng, J. Alloys Compd. 766, 161 (2018).

    Article  CAS  Google Scholar 

  25. A. Pandey, P. Verma, and O.P. Pandey, Indian J. Eng. Mater. Sci. 15, 236 (2008).

    CAS  Google Scholar 

  26. A. Verma, and T.R. Anantharaman, Bull. Mater. Sci. 14, 1 (1991).

    Article  CAS  Google Scholar 

  27. Y. Shen, L. Gould, in Proceedings of the 33rd IEEE Holm Conference on Electrical Contacts (1987), pp. 157.

  28. J.W. Lee, and H.C. Lee, Scripta Mater. 42, 169 (1999).

    Article  Google Scholar 

  29. C.P. Wu, D.Q. Yi, C.H. Xu, J. Li, B. Wang, X.D. Lu, and H. Zhang, Oxid. Met. 70, 121 (2008).

    Article  CAS  Google Scholar 

  30. G. Wiehl, B. Kempf, M. Ommer, and M. Rettenmayr, Int. J. Mater. Res. 103, 283 (2012).

    Article  CAS  Google Scholar 

  31. A. Verma, and T.R. Anantharaman, J. Mater. Sci. 27, 5623 (1992).

    Article  CAS  Google Scholar 

  32. X.L. Zhou, L. Chen, M.M. Liu, J. Yu, D.M. Xiong, Z. Zheng, and L.H. Wang, Sci. Eng. Compos. Mater. 26, 221 (2019).

    Article  CAS  Google Scholar 

  33. C. Leung, E. Streicher, D. Fitzgerald, J. Cook, in Proceedings of the 51st IEEE Holm Conference on Electrical Contacts (2005), pp. 22.

  34. K.K. Khichar, S.B. Dangi, V. Dhayal, U. Kumar, S.Z. Hashmi, V. Sadhu, B.L. Choudhary, S. Kumar, S. Kaya, A.E. Kuznetsov, S. Dalela, S.K. Gupta, and P.A. Alvi, Polym. Compos. 41, 2792 (2020).

    Article  CAS  Google Scholar 

  35. V. Dhayal, S.Z. Hashmi, U. Kumar, B.L. Choudhary, A.E. Kuznetsov, S. Dalela, S. Kumar, S. Kaya, S.N. Dolia, and P.A. Alvi, J. Mater. Sci. 55, 14829 (2020).

    Article  CAS  Google Scholar 

  36. G. Lal, K. Punia, S.N. Dolia, P.A. Alvi, B.L. Choudhary, and S. Kumar, J. Alloys Compd. 828, 154388 (2020).

    Article  CAS  Google Scholar 

  37. B.L. Choudhary, U. Kumar, S. Kumar, S. Chander, S. Kumar, S. Dalela, S.N. Dolia, and P.A. Alvi, J. Magn. Magn. Mater. 507, 8 (2020).

    Article  Google Scholar 

  38. U. Kumar, S. Upadhyay, and P.A. Alvi, Physica B Condens. Matter 604, 11 (2021).

    Article  Google Scholar 

  39. J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben, Handbook of x-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data (Physical Electronics Division, Perkin-Elmer Corporation, 1992), pp. 85–127.

  40. A. Yakymovych, P. Svec Sr., L. Orovcik, O. Bajana, and H. Ipser, J. Electron. Mater. 47, 117 (2018).

    Article  CAS  Google Scholar 

  41. L. Wang, X. Shen, F. Sun, Y. Liu, in International Conference on Electronic Packaging Technology and High Density Packaging (2008), pp. 783.

  42. V. Cosovic, A. Cosovic, N. Talijan, D. Zivkovic, D. Manasijevic, and D. Minic, J. Alloys Compd. 567, 33 (2013).

    Article  CAS  Google Scholar 

  43. F. Heringhaus, P. Braumann, D. Ruhlicke, E. Susnik, R. Wolmer, in Proceedings of the 20th International Conference on Electrical Contact Phenom Stockholm (2000), pp. 199.

  44. D.L. Ye, and J.H. Hu, Handbook of practical inorganic thermodynamic data (Beijing: Metallurgical Industry Press, 2002), pp. 12–48.

    Google Scholar 

  45. S.Y. Persaud and R.C. Newman, Corrosion 72, 881 (2016).

    Article  CAS  Google Scholar 

  46. Y. Ghaffari, K. Daub, R.C. Newman, and S.Y. Persaud, Corros. Sci. 175, 108869 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Key Research and Development Program of Zhejiang Province, China (Grant No. 2017C01051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Shen.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, C., Shen, T., Yang, H. et al. Investigation of the Microstructure and Electrical Performance of Ag/SnO2In2O3 Contacts with Nickel Addition Fabricated by Internal Oxidation. J. Electron. Mater. 51, 4918–4937 (2022). https://doi.org/10.1007/s11664-022-09717-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09717-1

Keywords

Navigation