Skip to main content
Log in

RETRACTED ARTICLE: Three-Dimensional Fluorescence Imaging of Electrical Tree Morphology in Epoxy Resin

  • Brief Communication
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

This article was retracted on 16 September 2022

This article has been updated

Abstract

Insulation failure due to electrical tree degradation is a challenge for epoxy resin (EP) operating in high electric field environments. To provide an experimental basis for the electrical tree inhibition method, we observed the inception times/voltages and growth rates of EP electrical trees at different ambient temperatures in real time using a micro-charge-coupled device, and proposed an in situ nondestructive observation method for obtaining the three-dimensional morphology of the EP electrical tree by fluorescence imaging. We also elucidated the influence mechanism of ambient temperatures on the growth characteristics of electrical trees by the molecular dynamics method. The results revealed that increasing the ambient temperature could increase the fractional free volume of a cross-linked EP system, resulting in increased charge carrier damage to the molecular chains, thus promoting the growth of EP electrical trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Change history

References

  1. Z. Ahmadi, Epoxy in Nanotechnology: a Short Review. Prog. Org. Coat. 132, 445 (2019).

    Article  CAS  Google Scholar 

  2. Y. Lin, X.Y. Huang, J. Chen, and P.K. Jiang, Epoxy Thermoset Resins with High Pristine Thermal Conductivity. High Volt. 2, 139 (2017).

    Article  Google Scholar 

  3. A. Cavallini, D. Fabiani, and G.C. Montanari, Power Electronics and Electrical Insulation Systems-Part 1: Phenomenology Overview. IEEE Electr. Insul. M. 26, 7 (2010).

    Article  Google Scholar 

  4. B.X. Du, J.S. Xue, and J.G. Su, Effects of Ambient Temperature on Electrical Tree in Epoxy Resin Under Repetitive Pulse Voltage. IEEE Trans. Dielectr. Electr. Insul. 24, 1527 (2017).

    Article  CAS  Google Scholar 

  5. Z.P. Lv, S.Y. Chen, S.M. Rowland, J. Carr, and T. Burnett, 3D XCT Imaging of Electrical Tree Growth in Epoxy Resin. IEEE Trans. Dielectr. Electr. Insul. 27, 631 (2020).

    Article  Google Scholar 

  6. M. Yoshizawa, E. Watanabe, and T. Moriya, Ultrasonic Measurement of Three-dimensional Structure of Electrical Trees Using Characteristics of Tree Structure. Electr. Eng. Jpn. 119, 7 (1997).

    Article  Google Scholar 

  7. J.Y. Xie, L. Gao, J. Hu, Q. Li, and J.L. He, Self-healing of Electrical Damage in Thermoset Polymers via Anionic Polymerization. J. Mater. Chem. C. 8, 6025 (2020).

    Article  CAS  Google Scholar 

  8. A. Poachaiyapoom, R. Leardkun, and J. Mounkong, Miniature Vapor Compression Refrigeration System for Electronics Cooling. Case Stud. Therm. Eng. 13, 100365 (2019).

    Article  Google Scholar 

  9. B.X. Du, J.G. Su, and T. Han, Compressive Stress Dependence of Electrical Tree Growth Characteristics in EPDM. IEEE Trans. Dielectr. Electr. Insul. 25, 13 (2018).

    Article  CAS  Google Scholar 

  10. D.E. Jiang, A.C.T. van Duin, and W.A. Goddard III., Simulating the Initial Stage of Phenolic Resin Carbonization via the ReaxFF Reactive Force Field. J. Phys. Chem. A. 113, 6891 (2009).

    Article  CAS  Google Scholar 

  11. P.J.F. Harris, Fullerene Related Structure of Commercial Glassy Carbons. Philos Mag. 84, 3159 (2004).

    Article  CAS  Google Scholar 

  12. T. Yang and Z. Cheng, Construction of Efficient Deep-red/Near-infrared Emitter Based on a Large π-Conjugated Acceptor and Delayed Fluorescence OLEDs with External Quantum Efficiency of Over 20%. J. Phys. Chem. C. 123, 18585 (2019).

    Article  CAS  Google Scholar 

  13. B.B. Johnsen, A.J. Kinloch, and R.D. Mohammed, Toughening Mechanisms of Nanoparticle-Modified Epoxy Polymers. Polymer 48, 530 (2007).

    Article  CAS  Google Scholar 

  14. S.T. Li, W.W. Wang, S.H. Yu, and H.G. Sun, Influence of Hydrostatic Pressure on Dielectric Properties of Polyethylene/aluminum Oxide Nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 21, 519 (2014).

    Article  CAS  Google Scholar 

  15. J. Artbauer, Electric Strength of Polymers. J. Phys. D: Appl. Phys. 29, 446 (1996).

    Article  CAS  Google Scholar 

  16. S. Nakamura, A. Kumada, and K. Hidaka, Effects of Temperature on Electrical Treeing and Partial Discharges in Epoxy/silica Nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 27, 1169 (2020).

    Article  CAS  Google Scholar 

  17. H.J. Wiesmann and H.R. Zeller, A Fractal Model of Dielectric Breakdown and Prebreakdown in Solid Dielectrics. J. Appl. Phys. 60, 1770 (1986).

    Article  Google Scholar 

  18. M. Roy, J.K. Nelson, R.K. MacCrone, L.S. Schadler, C.W. Reed, R. Keefe, and W. Zenger, Polymer Nanocomposite Dielectrics–the Role of the Interface. IEEE Trans. Dielectr. Electr. Insul. 12, 629 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Qianqiu Shao: Conceptualization, Methodology, Formal analysis, Data curation, Visualization, Writing.

Corresponding author

Correspondence to Qianqiu Shao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s11664-022-09935-7

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Q. RETRACTED ARTICLE: Three-Dimensional Fluorescence Imaging of Electrical Tree Morphology in Epoxy Resin. J. Electron. Mater. 51, 4802–4807 (2022). https://doi.org/10.1007/s11664-022-09695-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09695-4

Keywords

Navigation