Skip to main content

Advertisement

Log in

Recent Progress on Nanostructured Transition Metal Oxides As Anode Materials for Lithium-Ion Batteries

  • Review Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Lithium-ion batteries (LIBs) have been broadly utilized in the field of portable electric equipment because of their incredible energy density and long cycling life. In order to overcome the capacity and rate bottlenecks of commercial graphite and further enhance the electrochemical performance of LIBs, it is vital to develop new electrode materials. Transition metal oxides (TMOs) have emerged as a key type of electrode material for energy storage and conversion application for their low cost, rich abundance and higher specific capacities. However, these materials have low electrical conductivity, poor ionic conductivity and ion diffusion kinetics, large volume expansion, high-voltage hysteresis, and comprehensive structural reorganization that cause poor retention in capacity. Several approaches have been employed to overcome these issues such as preparing nanostructured materials and dispersing metal oxide nanoparticles in a conductive medium such as carbon, reduced graphene oxide, and carbon nanotubes (CNT), which can reduce volume expansion, provide shorter diffusion path length and enhance the contact area. This work briefly introduces the recent progress in TMO-based nanostructure composites as electrode materials for LIBs, and some relevant prospects are also proposed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

Could be available if required.

References

  1. P. Gu, M.B. Zheng, Q.X. Zhao, X. Xiao, H. Xue, and H. Pang, Rechargeable Zinc-Air Batteries: A Promising Way to Green Energy. J. Mater. Chem. A 5, 7651 (2017).

    Article  CAS  Google Scholar 

  2. H. Kim, J. Hong, K. Park, H. Kim, S. Kim, and K. Kang, Aqueous Rechargeable Li and Na Ion Batteries. Chem. Rev. 114, 11788 (2014).

    Article  CAS  Google Scholar 

  3. P.H. Yang, P. Sun, and W. Mai, Electrochromic Energy Storage Devices. Mater. Today 19, 394 (2016).

    Article  CAS  Google Scholar 

  4. Y.H. Dou, L. Zhang, X. Xu, Z. Sun, T. Liao, and S. Dou, Atomically Thin Non-Layered Nanomaterials for Energy Storage and Conversion. Chem. Soc. Rev. 46, 7338 (2017).

    Article  CAS  Google Scholar 

  5. W.Y. Long, B.Z. Fang, A. Ignaszak, Z.Z. Wu, Y. Wang, and D. Wilkinson, Biomass-Derived Nanostructured Carbons and Their Composites as Anode Materials for Lithium Ion Batteries. Chem. Soc. Rev. 46, 7176 (2017).

    Article  CAS  Google Scholar 

  6. L.M. Zhu, W.X. Li, L.L. Xie, Q. Yang, and X. Cao, Rod-Like NaV3O8 as Cathode Materials with High Capacity and Stability for Sodium Storage. Chem. Eng. J. 372, 1056 (2019).

    Article  CAS  Google Scholar 

  7. X.F. Chen, X.Y. Zhu, G.P. Cao, S.T. Zhang, Y. Mu, H. Ming, and J. Qiu, Fe3O4-Based Anodes with High Conductivity and Fast Ion Diffusivity Designed for High-Energy Lithium-Ion Batteries. Energy Fuels 35, 1810 (2020).

    Article  CAS  Google Scholar 

  8. G. Park, J. Park, J. Kim and Y. Kang, Recent Advances in Heterostructured Anode Materials with Multiple Anions for Advanced Alkali‐Ion Batteries. Adv. Energy Mater. 11, (2021).

  9. A. Reyes Jimenez, R. Klopsch, R. Wagner, U.C. Rodehorst, M. Kolek, R. Nolle, M. Winter, and T. Placke, A Step Toward High-Energy Silicon-Based Thin Film Lithium Ion Batteries. ACS Nano 11, 4731 (2017).

    Article  CAS  Google Scholar 

  10. R. Wagner, N. Preschitschek, S. Passerini, J. Leker, and M. Winter, Current Research Trends and Prospects Among the Various Materials and Designs Used in Lithium-Based Batteries. J. Appl. Electrochem. 43, 481 (2013).

    Article  CAS  Google Scholar 

  11. H.M. Liu and W.S. Yang, Ultralong Single Crystalline V2O5 Nanowire/Graphene Composite Fabricated by a Facile Green Approach and Its Lithium Storage Behavior. Energy Environ. Sci. 4, (2011).

  12. W. Liu, M. Song, B. Kong and Y. Cui, Flexible and Stretchable Energy Storage: Recent Advances and Future Perspectives. Adv. Mater. 29, (2017).

  13. W. Yuan, B. Wang, H. Wu, M. Xiang, Q. Wang, H. Liu, Y. Zhang, H. Liu, and S. Dou, A Flexible 3D Nitrogen-Doped Carbon foam@CNTs Hybrid Hosting TiO2 Nanoparticles as Free-Standing Electrode for Ultra-Long Cycling Lithium-Ion Batteries. J. Power Sourc. 379, 10 (2018).

    Article  CAS  Google Scholar 

  14. J.P. Liu, L.W. Dong, D.J. Chen, Y.P. Han, Y. Liang, M. Yang, J. Han, C. Yang and W. He, Metal Oxides with Distinctive Valence States in an Electron‐Rich Matrix Enable Stable High‐Capacity Anodes for Li Ion Batteries. Small Methods 4, (2019).

  15. J.S. Chen, and X.W. Lou, SnO2-Based Nanomaterials: Synthesis and Application in Lithium-Ion Batteries. Small 9, 1877 (2013).

    Article  CAS  Google Scholar 

  16. W. Xia, F. Xu, C. Zhu, H.L. Xin, Q. Xu, P. Sun, and L. Sun, Probing Microstructure and Phase Evolution of α-MoO3 Nanobelts for Sodium-Ion Batteries by In Situ Transmission Electron Microscopy. Nano Energy 27, 447 (2016).

    Article  CAS  Google Scholar 

  17. Y.F. Deng, C.C. Fang, and G.H. Chen, The Developments of SnO2/Graphene Nanocomposites as Anode Materials for High Performance Lithium Ion Batteries: A Review. J. Power Sourc. 304, 81 (2016).

    Article  CAS  Google Scholar 

  18. Z.T. Li, G.L. Wu, S.Z. Deng, S. Wang, Y. Wang, J. Zhou, S. Liu, W. Wu, and M. Wu, Combination of Uniform SnO2 Nanocrystals with Nitrogen Doped Graphene for High-Performance Lithium-Ion Batteries Anode. Chem. Eng. J. 283, 1435 (2016).

    Article  CAS  Google Scholar 

  19. X.M. Liu, T. Xu, Y.L. Li, Z. Zang, X. Peng, H. Wei, W. Zha, and F. Wang, Enhanced X-ray Photon Response in Solution-Synthesized CsPbBr3 Nanoparticles Wrapped by Reduced Graphene Oxide. Sol. Energy Mater. Sol. Cells 187, 249 (2018).

    Article  CAS  Google Scholar 

  20. F. Ma, A. Yuan, J. Xu, and P. Hu, Porous Alpha-MoO3/MWCNT Nanocomposite Synthesized Via a Surfactant-Assisted Solvothermal Route as a Lithium-Ion-Battery High-Capacity Anode Material with Excellent Rate Capability and Cyclability. ACS Appl. Mater. Interfaces 7, 15531 (2015).

    Article  CAS  Google Scholar 

  21. Y. Li, Y. Wang, G. Cui, T. Zhu, J. Zhang, C. Yu, J. Cui, J. Wu, H.H. Tan, Y. Zhang, and Y. Wu, Carbon-Coated Self-Assembled Ultrathin T-Nb2O5 Nanosheets for High-Rate Lithium-Ion Storage with Superior Cycling Stability. ACS. Appl. Energy. Mater 3, 12037 (2020).

    Article  CAS  Google Scholar 

  22. L. Lou, X. Kong, T. Zhu, J. Lin, S. Liang, F. Liu, G. Cao, and A. Pan, Facile Fabrication of Interconnected-Mesoporous T-Nb2O5 Nanofibers as Anodes for Lithium-Ion Batteries. Sci. China Mater. 62, 465 (2018).

    Article  CAS  Google Scholar 

  23. P. Venkatachalam, T. Kesavan, G. Maduraiveeran, M. Kundu and M. Sasidharan, Self-Assembled Mesoporous Nb2O5 as a High Performance Anode Material for Rechargeable Lithium Ion Batteries. Mater. Res. Express. 6, (2018).

  24. L. Yin, Y.J. Gao, I. Jeon, H. Yang, J.-P. Kim, S.Y. Jeong, and C.R. Cho, Rice-Panicle-like γ-Fe2O3@C Nanofibers as High-Rate Anodes for Superior Lithium-Ion Batteries. Chem. Eng. J. 356, 60 (2019).

    Article  CAS  Google Scholar 

  25. J. Mao, X. Hou, H. Chen, Q. Ru, S. Hu, and K.-H. Lam, Facile Spray Drying Synthesis of Porous Structured ZnFe2O4 as High-Performance Anode Material for Lithium-Ion Batteries. J. Mater. Sci. Mater. Electron. 28, 3709 (2016).

    Article  CAS  Google Scholar 

  26. J. Yan, J. Yao, Z. Zhang, Y. Li, and S. Xiao, 3D Hierarchical Porous ZnFe2O4 Nano/Micro Structure as a High-Performance Anode Material for Lithium-Ion Batteries. Mater. Lett. 245, 122 (2019).

    Article  CAS  Google Scholar 

  27. G. Qin, L. Ding, M. Zeng, K. Zhang, Y. Zhang, Y. Bai, J. Wen and J. Li, Mesoporous Fe2O3/N-Doped Graphene Composite as an Anode Material for Lithium Ion Batteries with Greatly Enhanced Electrochemical Performance. J. Electroanal. Chem. 866, (2020).

  28. Z. Zhang, J. Liang, X. Zhang, W. Yang, X. Dong, and Y. Jung, Dominant Pseudocapacitive Lithium Storage in the Carbon-Coated Ferric Oxide Nanoparticles (Fe2O3@C) Towards Anode Materials for Lithium-Ion Batteries. Int. J. Hydrogen Energy 45, 8186 (2020).

    Article  CAS  Google Scholar 

  29. B. Wu, P. Wang, and J. Song, Mixed-Solvothermal Synthesis and Morphology-Dependent Electrochemical Properties of α-Fe2O3 Nanoparticles for Lithium-Ion Batteries. J. Mater. Sci. Mater. Electron. 31, 6779 (2020).

    Article  CAS  Google Scholar 

  30. J. Singh, S. Lee, S. Kim, S.P. Singh, J. Kim, A.K. Rai, Improved Lithium Storage in Fe2O3 Nano-Particles Over Nano-Rods Morphology. Solid State Ionics 362, (2021).

  31. H. Quan, W. Zeng, M. Pan, Y. Xu, D. Chen, and J. Liang, Controlled Synthesis of α-Fe2O=@rGO Core–Shell Nanocomposites as Anode for Lithium Ion Batteries. J. Mater. Sci. 56, 664 (2020).

    Article  CAS  Google Scholar 

  32. Z. Ren, S. Yu, B. Han, Z. Shao and Z. Wang, One-Pot Carbonization Synthesis of γ-Fe2O3/Fe/Carbon Composite for High Li-Storage and Excellent Stability. Mater. Lett. 275, (2020).

  33. D. Qu, Z. Sun, S. Gan, L. Gao, Z. Song, H. Kong, J. Xu, X. Dong, and L. Niu, Two-Dimensional Fe2O3/TiO2 Composite Nanoplates with Improved Lithium Storage Properties as Anodic Materials for Lithium-Ion Full Cells. ChemElectroChem 7, 4963 (2020).

    Article  CAS  Google Scholar 

  34. Y. Chen, H. Xia, L. Lu and J. Xue, Synthesis of Porous Hollow Fe3O4 Beads and Their Applications in Lithium Ion Batteries. J. Mater. Chem. 22, (2012).

  35. Z.L. Na, R.F. Yao, Q. Yan, X.R. Wang, X. Sun and X. Wang, A general Strategy for Enabling Fe3O4 with Enhanced Lithium Storage Performance: Synergy Between Yolk-Shell Nanostructures and Doping-Free Carbon. Electrochim. Acta 367, (2021).

  36. S. Chauque, A.H. Braga, R.V. Gonçalves, L.M. Rossi, and R.M. Torresi, Enhanced Energy Storage of Fe3O4 Nanoparticles Embedded in N-Doped Graphene. ChemElectroChem 7, 1456 (2020).

    Article  CAS  Google Scholar 

  37. T.N. Pham, S.T. Tanaji, J.S. Choi, H.U. Lee, I.T. Kim, and Y.C. Lee, Preparation of Sn-aminoclay (SnAC)-Templated Fe3O4 Nanoparticles as an Anode Material for Lithium-Ion Batteries. RSC Adv. 9, 10536 (2019).

    Article  CAS  Google Scholar 

  38. X. Yang, H. Wu, S. Wang, F. Cheng, C. Feng, and K. Liu, Synthesis and Electrochemical Properties of CeVO4/Fe3O4 as a Novel Anode Material for Lithium-Ion Batteries. Ionics 26, 4859 (2020).

    Article  CAS  Google Scholar 

  39. Q.Q. Peng, C. Guo, S. Qi, W.W. Sun, L. Lv, F.H. Du, B. Wang, S. Chen, and Y. Wang, Ultra-Small Fe3O4 Nanodots Encapsulated in Layered Carbon Nanosheets With Fast Kinetics for Lithium/Potassium-Ion Battery Anodes. RSC Adv. 11, 1261 (2021).

    Article  CAS  Google Scholar 

  40. Y. Shi, K. Wang, H. Li, H. Wang, X. Li, X. Wu, J. Zhang, H. Xie, Z. Su, J. Wang and H. Sun, Fe3O4 Nanoflakes-RGO Composites: A High Rate Anode Material for Lithium-Ion Batteries. Appl. Surf. Sci. 511, (2020).

  41. H. Jeong, H. Kim, K. Jo, J. Jang, J. Choi and J. Koo, Oriented Layered Assemblies of Graphene Nanosheets/Fe3O4 Nanoparticles as a Superior Anode Material for Lithium Ion Batteries. Appl. Surf. Sci. 508, (2020).

  42. Y. Liu, J.S. Chen, Z.K. Liu, H.Y. Xu, Y.H. Zheng, J.S. Zhong, Q.L. Yang, H.F. Tian, Z.Q. Shi, J.L. Yao and C.X. Xiong, Facile Fabrication of Fe3O4 Nanoparticle/Carbon Nanofiber Aerogel From Fe-Ion Cross-Linked Cellulose Nanofibrils as Anode for Lithium-Ion Battery With Superhigh Capacity. J. Alloys Compd. 829, (2020).

  43. Y. Qu, D. Zhang, X. Wang, H. Qiu, T. Zhang, M. Zhang, G. Tian, H. Yue, S. Feng, and G. Chen, Porous ZnFe2O4 Nanospheres as Anode Materials for Li-Ion Battery With High Performance. J. Alloys Compd. 721, 697 (2017).

    Article  CAS  Google Scholar 

  44. X. Zhong, Z. Yang, H. Wang, L. Lu, B. Jin, M. Zha, and Q. Jiang, A Novel Approach to Facilely Synthesize Mesoporous ZnFe2O4 Nanorods for Lithium Ion Batteries. J. Power Sources 306, 718 (2016).

    Article  CAS  Google Scholar 

  45. X.H. Hou, X.Y. Wang, L.M. Yao, S.J. Hu, Y.P. Wu, and X. Liu, Facile Synthesis of ZnFe2O4 With Inflorescence Spicate Architecture as ANODE Materials for Lithium-Ion Batteries with Outstanding Performance. New J. Chem. 39, 1943 (2015).

    Article  CAS  Google Scholar 

  46. J. Yao, Y. Zhang, J. Yan, H. Bin, Y. Li, and S. Xiao, Nanoparticles-Constructed Spinel ZnFe2O4 Anode Material with Superior Lithium Storage Performance Boosted by Pseudocapacitance. Mater. Res. Bull. 104, 188 (2018).

    Article  CAS  Google Scholar 

  47. J.H. Chang, J.Y. Cheong, Y. Shim, J.Y. Park, S.J. Kim, J. Lee, H.J. Lee, H. Lim, W. Liu, Q. Zhang, O. Terasaki, C.W. Lee, I.D. Kim, and J.M. Yuk, Unravelling High Volumetric Capacity of Co3O4 Nanograin-Interconnected Secondary Particles for Lithium-Ion Battery Anodes. J. Mater. Chem. A 9, 6242 (2021).

    Article  CAS  Google Scholar 

  48. R.R. Li, H.Z. Ke, C. Shi, Z.W. Long, Z. Dai, H. Qiao and K. Wang, Mesoporous RGO/NiCo2O4@Carbon Composite Nanofibers Derived from Metal-Organic Framework Compounds for Lithium Storage. Chem. Eng. J. 415 (2021).

  49. H.H. Xiao, G.Q. Ma, J.Y. Tan, S. Ru, Z. Ai, and C. Wang, Three-Dimensional Hierarchical ZnCo2O4@C3N4-B Nanoflowers as High-Performance Anode Materials for Lithium-Ion Batteries. RSC Adv. 10, 32609 (2020).

    Article  CAS  Google Scholar 

  50. H.H. Chen, J. He, Y.L. Li, S. Luo, L. Sun, X. Ren, L. Deng, P. Zhang, Y. Gao, and J. Liu, Hierarchical CuOx-Co3O4 Heterostructure Nanowires Decorated on 3D Porous Nitrogen-Doped Carbon Nanofibers as Flexible and Free-Standing Anodes for High-Performance Lithium-Ion Batteries. J. Mater. Chem. A 7, 7691 (2019).

    Article  CAS  Google Scholar 

  51. Q. Feng, Y. Du, S. Liang, and H. Li, Reduced graphene oxide supported quasi-two-dimensional ZnCo2O4 Nanosheets for Lithium Ion Batteries with High Electrochemical Stability. Nanotechnology 31, 045402 (2019).

    Article  CAS  Google Scholar 

  52. Y. Zhang, Q. Shi, J. Song, L. Han, S. Gu, F. Tian, Y. Zhang, C. Zhou, L. Wang, Z. Sun, X. Song, and S. Yang, A Facile Strategy for Co3O4/Co Nanoparticles Encapsulated in Porous N-Doped Carbon Nanofibers Towards Enhanced Lithium Storage Performance. J. Porous Mater. 27, 1 (2019).

    Article  CAS  Google Scholar 

  53. Y. Dai, X. Fang, T. Yang, and W. Wang, Construction of the Peanut-Like Co3O4 as Anode Materials for High-Performance Lithium-Ion Batteries. Ionics 26, 1261 (2019).

    Article  CAS  Google Scholar 

  54. R. Huang, Y. Li, Y. Song and L. Wang, Facial Preparation of N-Doped Carbon Foam Supporting Co3O4 Nanorod Arrays as Free-Standing Lithium-Ion Batteries’ anode. J. Alloys Compd. 818 (2020).

  55. C. Zhang, Y. Song, L. Xu and F. Yin, In Situ Encapsulation of Co/Co3O4 Nanoparticles in Nitrogen-Doped Hierarchically Ordered Porous Carbon as High Performance Anode for Lithium-Ion Batteries. Chem. Eng. J. 380, (2020).

  56. H. Zeng, B. Xing, L. Chen, G. Yi, G. Huang, R. Yuan, C. Zhang, Y. Cao, and Z. Chen, Nitrogen-Doped Porous Co3O4/GRAPHENE Nanocomposite for Advanced Lithium-Ion Batteries. Nanomaterials Basel 9, 1253 (2019).

    Article  CAS  Google Scholar 

  57. J. Yang, M. Gao, J. Lei, X. Jin, L. Yu, and F. Ren, Surfactant-Assisted Synthesis of Ultrathin Two-Dimensional Co3O4 Nanosheets for Applications in Lithium-Ion Batteries and Ultraviolet Photodetector. J. Solid State Chem. 274, 124 (2019).

    Article  CAS  Google Scholar 

  58. L. Wang, Y. Yuan, Y. Zheng, X. Zhang, S. Yin, and S. Guo, Capsule-Like Co3O4 Nanocage@Co3O4 Nanoframework/TiO2 Nodes as Anode Material for Lithium-Ion Batteries. Mater. Lett. 253, 5 (2019).

    Article  CAS  Google Scholar 

  59. W. Zhong, X. Huang, Y. Lin, Y. Cao, and Z. Wang, Compact Co3O4/Co In-Situ nanocomposites Prepared by Pulsed Laser Sintering as Anode Materials for Lithium-Ion Batteries. J. Energy. Chem. 58, 386 (2021).

    Article  Google Scholar 

  60. Y. Tan, C. Yang, W. Qian, X. Sui, C. Teng, Q. Li and Z. Lu, Carbon Coated Porous Co3O4 Polyhedrons as Anode Materials for Highly Reversible Lithium-Ion Storage. J. Alloys Compd. 855, (2021).

  61. W.B. Liu, Y.Y. Fu, Y.F. Li, S. Chen, Y. Song, and L. Wang, Three-Dimensional Carbon Foam Surrounded by Carbon Nanotubes and Co-Co3O4 Nanoparticles for Stable Lithium-Ion Batteries. Compos. B 163, 464 (2019).

    Article  CAS  Google Scholar 

  62. J. Zhang, B. Qian, S. Sun, S. Tao, W. Chu, D. Wu, and L. Song, Ultrafine Co3O4 Nanoparticles Within Nitrogen-Doped Carbon Matrix Derived from Metal-Organic Complex for Boosting Lithium Storage and Oxygen Evolution Reaction. Small 15, e1904260 (2019).

    Article  CAS  Google Scholar 

  63. Y. Huang, Y. Fang, X. Lu, D. Luan, and X. Lou, Co3O4 Hollow Nanoparticles Embedded in Mesoporous Walls of Carbon Nanoboxes for Efficient Lithium Storage. Angewandte Chemie. International Ed. in English 59, 19914 (2020).

    Article  CAS  Google Scholar 

  64. I.K. Hewavitharana, Y. Ding, K.Y. Simon Ng and D. Deng, 1-D NiO Nanorods Pillared 2-D MnO2 Nanosheets as Lithium-Free Cathode Materials for Charged-State Lithium Batteries. Chem. Eng. Sci. 236, (2021).

  65. W. Jae, J. Song, J.J. Hong, and J. Kim, Raspberry-like Hollow Ni/NiO Nanospheres Anchored on Graphitic Carbon Sheets as Anode Material for Lithium-Ion batteries. J. Alloys Compd. 805, 957 (2019).

    Article  CAS  Google Scholar 

  66. Y.N. Zou, Z.X. Guo, L. Ye, W.H. Shi, Y. Cui, X. Wang, X. Shan, L. Zhao, and J. Yan, Co/La-Doped NiO Hollow Nanocubes Wrapped with Reduced Graphene Oxide for Lithium Storage. ACS. Appl. Nano. Mate. 4, 2910 (2021).

    Article  CAS  Google Scholar 

  67. Z. Jiang, C. Liu, L. Zhang, T. Wei, H. Jiang, J. Zhou, M. Shi, S. Liang, S. Zhang and Z. Fan, Ultra-Small NiO Nanoparticles Anchored on Nitrogen-Doped Carbon Flowers Through Strong Chemical Bonding for High-Performance Lithium-Ion Batteries. J. Power Sources 441, (2019).

  68. S.W. Wang, F. Wang, P. Wang, L. Han, S. Wu, Y. Chen, and D. Guo, 3D Porous Graphene Composite Film Embedded by Ni/NiO Nanoparticles as Freestanding Electrodes for Efficient Energy Storage Devices. Nanotechnology 31, 475704 (2020).

    Article  CAS  Google Scholar 

  69. H. Wang, H. Wang, J. Huang, X. Zhou, Q. Wu, Z. Luo, and F. Wang, Hierarchical Mesoporous/Macroporous Co-Doped NiO Nanosheet Arrays as Free-Standing Electrode Materials for Rechargeable Li-O2 Batteries. ACS Appl. Mater. Interfaces 11, 44556 (2019).

    Article  CAS  Google Scholar 

  70. J. Singh, S. Lee, S. Kim, S.P. Singh, J. Kim and A.K. Rai, Fabrication of 1D Mesoporous NiO Nano-Rods as High Capacity and Long-Life Anode Material for Lithium Ion Batteries. J. Alloys Compd. 850, (2021).

  71. Y.Y. Zheng, Y.W. Li, R. Huang, Y. Huang, J. Yao, B. Huang, and A.A. Dubale, Fabrication of 2D NiO Porous Nanosheets with Superior Lithium Storage Performance Via a Facile Thermal-Decomposition Method. ACS. Appl. Energy. Mater 2, 8262 (2019).

    Article  CAS  Google Scholar 

  72. S. Zhang, G. Wright, and Y. Yang, Materials and Techniques for Electrochemical Biosensor Design and Construction. Biosens. Bioelectron. 15, 273 (2000).

    Article  CAS  Google Scholar 

  73. X. Chen, T. Xiao, S.L. Wang, J. Li, P. Xiang, L.H. Jiang, and X. Tan, Superior Li-Ion Storage Performance of Graphene Decorated NiO Nanowalls on Ni as Anode for Lithium Ion Batteries. Mater. Chem. Phys. 222, 31 (2019).

    Article  CAS  Google Scholar 

  74. B.G. Yuan, J. Li, M.M. Xia, Y. Zhang, R. Lei, P. Zhao and X. Li, Investigation into Electrochemical Performance of NiO/Graphene Composite Nanofibers Synthesized by a Simple Method as Anode Materials for High-Performance Lithium Ion Batteries. Mater. Res. Express. 7, (2020).

  75. H.B. Ren, Z.Y. Wen, S. Chen, J. Liu, S.W. Joo, and J. Huang, Preparation of Reduced Graphene oxide@nickel Oxide Nanosheets Composites with Enhanced Lithium-Ion Storage Performance. Mater. Chem. Phys. 232, 229 (2019).

    Article  CAS  Google Scholar 

  76. Z.F. Yang, Z.C. Li, P.F. Li, C. Gao, and H. Zhang, NiO/Ni Nanocomposites Embedded in 3D Porous Carbon with High Performance for Lithium-Ion Storage. J. Mater. Sci. 55, 1659 (2019).

    Article  CAS  Google Scholar 

  77. K. Chu, Z. Li, S. Xu, G. Yao, Y. Xu, P. Niu and F. Zheng, NiO Nanocrystals Encapsulated into a Nitrogen-Doped Porous Carbon Matrix as Highly Stable Li-Ion Battery Anodes. J. Alloys Compd. 854, (2021).

  78. Y.L. Tan, Q. Li, Z. Lu, C. Yang, W. Qian and F. Yu, Porous Nanocomposites by Cotton-Derived Carbon/NiO with High Performance for Lithium-Ion Storage. J. Alloys Compd. 874, (2021).

  79. W. Dang, X. Tang, W. Wang, Y. Yang, X. Li, L. Huang, and Y. Zhang, Micro-Nano NiO-MnCo2O4 Heterostructure with Optimal Interfacial Electronic Environment for High Performance and Enhanced Lithium Storage Kinetics. Dalton Trans. 49, 10994 (2020).

    Article  CAS  Google Scholar 

  80. Z.F. Wang, X.M. Zhang, X.L. Liu, W.Q. Zhang, Y.G. Zhang, Y. Li, C. Qin, W. Zhao and Z. Bakenov, Dual-Network Nanoporous NiFe2O4/NiO Composites for High Performance Li-Ion Battery Anodes. Chem. Eng. J. 388, (2020).

  81. Z. Xue, L. Li, L. Cao, W. Zheng, W. Yang and X. Yu, A Simple Method to Fabricate NiFe2O4/NiO@Fe2O3 Core-Shelled Nanocubes Based on Prussian Blue Analogues for Lithium Ion Battery. J. Alloys Compd. 825, (2020).

  82. X.Y. Wu, S.M. Li, Y.Y. Xu, B. Wang, J. Liu, and M. Yu, Hierarchical Heterostructures of NiO Nanosheet Arrays Grown on Pine Twig-Like β-NiS@Ni3S2 Frameworks as Free-Standing Integrated Anode for High-Performance Lithium-Ion Batteries. Chem. Eng. J. 356, 245 (2019).

    Article  CAS  Google Scholar 

  83. Y. Jia, Z. Ma, Z. Li, Z. He, J. Shao, and H. Zhang, Electrochemical Performances of NiO/Ni2N Nanocomposite Thin Film As anode Material for Lithium Ion Batteries. Front. Mater. Sci. 13, 367 (2019).

    Article  Google Scholar 

  84. A. Prasath, A. SelvaSharma, and P. Elumalai, Nanostructured SiO2@NiO Heterostructure Derived From Laboratory Glass Waste as Anode Material for Lithium-Ion Battery. Ionics 25, 1015 (2019).

    Article  CAS  Google Scholar 

  85. S.F. Zhang, Z.J. Zhang, J.L. Kang, Q. Huang, Z. Yu, Z. Qiao, Y. Deng, J. Li and W. Wang, Double-Shelled Nanoporous NiO Nanocrystal Doped MnO/Ni Network for High Performance Lithium-Ion Battery. Electrochim. Acta 320, (2019).

  86. J. Yan, M. Liu, N. Deng, L. Wang, A. Sylvestre, W. Kang, and Y. Zhao, Flexible MnO Nanoparticle-Anchored N-Doped Porous Carbon Nanofiber Interlayers for Superior Performance Lithium Metal Anodes. Nanoscale. Adv. 3, 1136 (2021).

    Article  CAS  Google Scholar 

  87. P. Mu, W. Ma, Y. Zhao, C. Zhang, S. Ren, F. Wang, C. Yan, Y. Chen, J.H. Zeng, and J.X. Jiang, Facile Preparation of MnO/Nitrogen-Doped Porous Carbon Nanotubes Composites and Their Application in Energy Storage. J. Power Sources 426, 33 (2019).

    Article  CAS  Google Scholar 

  88. Y. Wang, X. Chen, Z. Liu, H. Wu, H. Zhao, H. Liu, and Y. Zhang, Cycling-Induced Structure Refinement of MnO Nanorods Wrapped by N-Doped Carbon with Internal Void Space for Advanced Lithium-Ion Anodes. Appl. Surf. Sci. 479, 386 (2019).

    Article  CAS  Google Scholar 

  89. Y. Qin, B. Wang, S. Jiang, Q. Jiang, C. Huang, and H. Chen, Strongly Anchored MnO Nanoparticles on Graphene as High-Performance Anode Materials for Lithium-Ion Batteries. Ionics 26, 3315 (2020).

    Article  CAS  Google Scholar 

  90. R.R. Jiao, L. Zhao, S.L. Zhou, Y.J. Zhai, D.H. Wei, S.Y. Zeng, and X.X. Zhang, Effects of Carbon Content and Current Density on the Li+ Storage Performance for MnO@C Nanocomposite Derived from Mn-Based Complexes. Nanomaterials 10, 1629 (2020).

    Article  CAS  Google Scholar 

  91. X. Tian, D. Zhao, W. Meng, X. Han, H. Yang, Y. Duan, and M. Zhao, Highly Porous MnO/C@rGO Nanocomposite Derived from Mn-BDC@rGO as High-Performance Anode Material for Lithium Ion Batteries. J. Alloys Compd. 792, 487 (2019).

    Article  CAS  Google Scholar 

  92. L. Zhang, K. Wei, J. Yin, J. Zhou, L. Zhang, J. Li, and T. Jiao, Chemical Vapor Deposition-Assisted Fabrication of Self-Assembled Co/MnO@C Composite Nanofibers as Advanced Anode Materials for High-Capacity Li-Ion Batteries. Langmuir 36, 14342 (2020).

    Article  CAS  Google Scholar 

  93. Y. Liu, S. Sun, J. Han, C. Gao, L. Fan, and R. Guo, Multi-Yolk-Shell MnO@carbon Nanopomegranates with Internal Buffer Space as a Lithium Ion Battery Anode. Langmuir 37, 2195 (2021).

    Article  CAS  Google Scholar 

  94. K. Liao, Q. Zhong, Z. Lv, and Y. Bu, Fabrication of Core-Shell C/MnO Nanocomposite by Liquid Deposition for High Performance Lithium-Ion Batteries. J. Mater. Sci. Mater. Electron. 30, 5978 (2019).

    Article  CAS  Google Scholar 

  95. T.T. Feng, J.C. Wang, J. Yang, and M.Q. Wu, Investigation of Ordered Mesoporous Carbon@MnO Core–Shell Nanospheres as Anode Material for Lithium-Ion Batteries. J. Mater. Sci. 54, 6461 (2019).

    Article  CAS  Google Scholar 

  96. J. Yoon, W. Choi, H. Kim, Y.S. Choi, J.M. Kim and W. Yoon, The Effects of Nanostructures on Lithium Storage Behavior in Mn2O3 Anodes for Next-Generation Lithium-Ion Batteries. J. Power Sources 493, (2021).

  97. S. Meng, W. Yan, X. Ma, D. Sun, Y. Jin, and K. He, Hierarchical Structured Mn2O3 Nanomaterials with Excellent Electrochemical Properties for Lithium Ion Batteries. RSC Adv. 9, 1284 (2019).

    Article  CAS  Google Scholar 

  98. Y. Zhou, M. Zhang, X. Yan, Q. Han, C. Dong, X. Sun, D. You and F. Jiang, Spherical-Graphite/Nano-Mn2O3 Composites as Advanced Anode Materials for Lithium Half/Full Batteries. J. Alloys Compd. 853, (2021).

  99. L. Zhang, D. Ge, H. Geng, J. Zheng, X. Cao, and H. Gu, Synthesis of Porous Mn2O3 Embedded in Reduced Graphene Oxide as Advanced Anode Materials for Lithium Storage. New J. Chem. 41, 7102 (2017).

    Article  CAS  Google Scholar 

  100. Z. Zhou, C. Ding, W. Peng, Y. Li, F. Zhang, and X. Fan, One-Step Fabrication of Two-Dimensional Hierarchical Mn2O3@graphene Composite as High-Performance Anode Materials for Lithium Ion Batteries. J. Mater. Sci. Technol. 80, 13 (2021).

    Article  CAS  Google Scholar 

  101. M. Shaheer Akhtar, P.T.M. Bui, Z. Li, O. Yang, B.J. Paul, S. Kim, J. Kim, and A.K. Rai, Impact of Porous Mn3O4 Nanostructures on the Performance of Rechargeable Lithium Ion Battery: Excellent Capacity and Cyclability. Solid State Ionics 336, 31 (2019).

    Article  CAS  Google Scholar 

  102. T. Kozawa, and K. Nishikawa, Macroporous Mn3O4 Microspheres as a Conversion-Type Anode Material Morphology for Li-Ion Batteries. J. Solid State Electrochem. 24, 1283 (2020).

    Article  CAS  Google Scholar 

  103. Y. Qin, Z. Jiang, L. Guo, J. Huang and Z. Jiang, Controlled Thermal Oxidation Derived Mn3O4 Encapsulated in Nitrogen Doped Carbon as an Anode for Lithium/Sodium Ion Batteries with Enhanced Performance. Chem. Eng. J. 406, (2021).

  104. Y. Li, Y. Song, H. Wang, W. Yu, J. Wang, X. Dong, G. Liu, and Q. Ma, Electrospinning-Based Construction of Porous Mn3O4/CNFs as Anodes for High-Performance Lithium-Ion Batteries. New J. Chem. 44, 3888 (2020).

    Article  Google Scholar 

  105. K.Z. Cao, Y.H. Jia, S.D. Wang, K.J. Huang and H.Q. Liu, Mn3O4 Nanoparticles Anchored on Carbon Nanotubes as Anode Material with Enhanced Lithium Storage. J. Alloys Compd. 854, (2021).

  106. L. Wang, L. Li, H. Wang, J. Yang, F. Wu, and R. Chen, Stable Conversion Mn3O4 Li-Ion Battery Anode Material with Integrated Hierarchical and Core-Shell Structure. ACS. Appl. Energy. Mater 2, 5206 (2019).

    Article  CAS  Google Scholar 

  107. L. Liu, Z. Shen, X. Zhang, and S. Ma, Facile Controlled Synthesis of MnO2 Nanostructures for High-Performance Anodes in Lithium-Ion Batteries. J. Mater. Sci. Mater. Electron. 30, 1480 (2018).

    Article  CAS  Google Scholar 

  108. Y. Sui, C. Liu, P. Zou, H. Zhan, Y. Cui, C. Yang and G. Cao, Polypyrrole Coated δ-MnO2 Nanosheet Arrays as a Highly Stable Lithium-Ion-Storage Anode. Dalton Trans. 49, (2020).

  109. Z.G. Cao, Y.B. Yang, J.L. Qin and Z.X. Su, A Core-Shell Porous MnO2/Carbon Nanosphere Composite as the Anode of Lithium-Ion Batteries. J. Power Sources 491, (2021).

  110. M.B. Zheng, H. Tang, L.L. Li, Q. Hu, L. Zhang, H.G. Xue and H. Pang, Hierarchically Nanostructured Transition Metal Oxides for Lithium-Ion Batteries. Advancd Science (Weinh) 5, 1700592 (2018).

  111. C.J. Deng, M.L. Lau, C.R. Ma, P.G. Skinner, Y.Z. Liu, W.Q. Xu, H. Zhou, X.H. Zhang, D. Wu, Y. Yin, Y. Ren, J. Perez, D. Jaramillo, P. Barnes, D. Hou, M. Dahl, B. Williford, C. Zheng, and H. Xiong, A Mechanistic Study of Mesoporous TiO2 Nanoparticle Negative Electrode Materials with Varying Crystallinity for Lithium Ion Batteries. J. Mater. Chem. A 8, 3333 (2020).

    Article  CAS  Google Scholar 

  112. G.Q. Dong, B.X. Liu, G.H. Sun, G. Tian, S. Qi, and D. Wu, TiO2 Nanoshell@polyimide Nanofiber Membrane Prepared via a Surface-Alkaline-Etching and In-Situ Complexation-Hydrolysis Strategy for Advanced and Safe LIB Separator. J. Membr. Sci. 577, 249 (2019).

    Article  CAS  Google Scholar 

  113. N.X. Dong, J. Wang, G.F. Tian, S. Qi, G. Sun and D. Wu, Inorganic-Shell Reinforcement: TiO2-Coated Polyimide Nanofibers Membrane as Advanced Separator for Lithium-Ion Batteries. J. Electrochem. Soc. 167, (2021).

  114. K. El Ouardi, M. Dahbi, C. Hakim, M.O. Güler, H. Akbulut, A. El Bouari, and I. Saadoune, Facile Synthesis of Nanoparticles Titanium Oxide as High-Capacity and High-Capability Electrode for Lithium-Ion Batteries. J. Appl. Electrochem. 50, 583 (2020).

    Article  CAS  Google Scholar 

  115. J.H. Huo, Y.J. Xue, Y. Liu and S. Guo, Low-Temperature Preparation of Mesoporous TiO2 Honeycomb-Like Structure on TiO2 Nanotube Arrays as Binder-Free Anodes for Lithium-Ion Batteries. J. Electroanal. Chem. 863, (2020).

  116. N. Kim, M.R. Raj, and G. Lee, Nitrogen-Doped TiO2(B) Nanobelts Enabling Enhancement of Electronic Conductivity and Efficiency of Lithium-Ion Storage. Nanotechnology 31, 415401 (2020).

    Article  CAS  Google Scholar 

  117. T. Partheeban, T. Kesavan, A. Jithin, S. Dharaneshwar, and M. Sasidharan, Melamine-Templated TiO2 Nanoparticles as Anode with High Capacity and Cycling Stability for Lithium-Ion Batteries. J. Solid State Electrochem. 25, 919 (2020).

    Article  CAS  Google Scholar 

  118. Y. Zheng, Y. Yuan, Z. Tong, H. Yin, S. Yin, and S. Guo, Watermelon-like TiO2 nanOparticle (P25)@microporous Amorphous Carbon Sphere with Excellent Rate Capability and Cycling Performance for Lithium-Ion Batteries. Nanotechnology 31, 215407 (2020).

    Article  CAS  Google Scholar 

  119. Y.X. Fu, Y. Dai, X.Y. Pei, S.S. Lyu, Y. Heng and D. Mo, TiO2 Nanorods Anchor on Reduced Graphene Oxide (R-TiO2/rGO) Composite as Anode for High Performance Lithium-Ion Batteries. Appl. Surf. Sci. 497, (2019).

  120. Y. Yuan, Q. Chen, M. Zhu, G. Cai and S. Guo, Nano Tube-in-Tube CNT@void@TiO2@C with Excellent Ultrahigh Rate Capability and Long Cycling Stability for Lithium Ion Storage. J. Alloys Compd. 851, (2021).

  121. Z. Huang, C. Zhao, R. Xu, Y. Zhou, R. Jia, X. Xu and S. Shi, Carbon Modified Hierarchical Hollow Tubes Composed of TiO2 Nanoparticles for High Performance Lithium-Ion Batteries. J. Alloys Compd. 857, (2021).

  122. Y. Li, M. Chen, J. Cheng, W. Fu, Y. Hu, B. Liu, M. Zhang, and Z. Shen, Two-Dimensional Layered Ultrathin Carbon/TiO2 Nanosheet Composites for Superior Pseudocapacitive Lithium Storage. Langmuir 36, 2255 (2020).

    Article  CAS  Google Scholar 

  123. Y.P. Gao, C. Wang, P.F. Hu, F. He, M. Wu, and H. Zhang, Carbon-Incorporated, Nitrogen-Doped Branch-Like TiO2 Nanostructure Towards Superior Lithium Storage Performance. J. Alloys Compd. 787, 944 (2019).

    Article  CAS  Google Scholar 

  124. J. Wang, F. Li, C. Chen, X. Liu, T. Yao, T. Liu, L. Zhu, X. Ji and H. Wang, Atomic Layer Deposition of TiO2 Shells on CoSe2 Nanorods Towards Enhanced Lithium Storage Performance. J. Alloys Compd. 829, (2020).

  125. J. Wang, G. Yang, L. Wang, S. Wang, W. Yan, and S. Ding, In-Situ Fabrication of Transition-Metal-Doped TiO2 Nanofiber/Nanosheet Structure for High-Performance Li Storage. J. Alloys Compd. 787, 1110 (2019).

    Article  CAS  Google Scholar 

  126. X.H. Wang, and H.Y. Wang, Microwave–Synthesized TiO2 Nanotube as a Durable Li+-Storage Electrode Material. ChemistrySelect 5, 9022 (2020).

    Article  CAS  Google Scholar 

  127. J. Li, Y. Li, Q. Lan, Z. Yang, and X.-J. Lv, Multiple Phase N-doped TiO2 Nanotubes/TiN/Graphene Nanocomposites for High Rate Lithium Ion Batteries at Low Temperature. J. Power Sources 423, 166 (2019).

    Article  CAS  Google Scholar 

  128. L. Jia, Y. Li, L. Su, D. Liu, Y. Fu, J. Li, X. Yan, and D. He, TiO2 Nanoparticles In Situ Formed on Ti3C2 Nanosheets by a One-Step Ethanol-Thermal Method for Enhanced Reversible lithium-Ion Storage. ChemistrySelect 5, 3124 (2020).

    Article  CAS  Google Scholar 

  129. Y. Zhou, S. Liu, F. Liu, T. Gao, K. Fu, A. Dou, M. Su, and Y. Liu, Sphere-Like TiO2/Si Anode Material with Superior Performance for Lithium Ion Batteries. Ionics 26, 5349 (2020).

    Article  CAS  Google Scholar 

  130. L. Guo, L. Cao, J. He, J. Huang, Y. Wang, J. Li, K. Kajiyoshi, and S. Chen, Inducing [100]-Orientated Plate-Like α-MoO3 to Achieve Regularly Exfoliated Layer Structure Enhancing Li Storage Performance. J. Mater. Sci. Mater. Electron. 32, 3006 (2021).

    Article  CAS  Google Scholar 

  131. N. Naresh, P. Jena and N. Satyanarayana, Facile Synthesis of MoO3/rGO Nanocomposite as Anode Materials for High Performance Lithium-Ion Battery Applications. J. Alloys Compd. 810, (2019).

  132. S.R. Sahu, V.R. Rikka, P. Haridoss, A. Chatterjee, R. Gopalan and R. Prakash, A Novel α-MoO3/Single-Walled Carbon Nanohorns Composite as High-Performance Anode Material For Fast-Charging Lithium-Ion Battery. Adv. Energy Mater. 10, (2020).

  133. J. Xie, K. Zhu, J. Min, L. Yang, J. Luo, J. Liu, M. Lei, R. Zhang, L. Ren, and Z. Wang, In-Situ Grown Ultrathin MoS2 nanosheets on MoO2 Hollow Nanospheres to Synthesize Hierarchical Nanostructures and Its Application in Lithium-Ion Batteries. Ionics 25, 1487 (2019).

    Article  CAS  Google Scholar 

  134. Y. Feng, and H. Liu, One-Dimensional Architecture with Reduced Graphene Oxide Supporting Ultrathin MoO2 Nanosheets as High Performance Anodes for Lithium-Ion Batteries. Nanotechnology 30, 315602 (2019).

    Article  CAS  Google Scholar 

  135. J.F. Ni, G.B. Wang, J. Yang, D. Gao, J. Chen, L. Gao, and Y. Li, Carbon Nanotube-Wired and Oxygen-Deficient MoO3 Nanobelts with Enhanced Lithium-Storage Capability. J. Power Sources 247, 90 (2014).

    Article  CAS  Google Scholar 

  136. S. Fu, Q. Yu, Z. Liu, P. Hu, Q. Chen, S. Feng, L. Mai, and L. Zhou, Yolk-Shell Nb2O5 Microspheres as Intercalation Pseudocapacitive Anode Materials for High-Energy Li-Ion Capacitors. J. Mater. Chem. A 7, 11234 (2019).

    Article  CAS  Google Scholar 

  137. J. Wang, H. Li, L. Shen, S. Dong, and X. Zhang, Nb2O5 Nanoparticles Encapsulated in Ordered Mesoporous Carbon Matrix as Advanced Anode Materials for Li Ion Capacitors. RSC Adv. 6, 71338 (2016).

    Article  CAS  Google Scholar 

  138. R. Kodama, Y. Terada, I. Nakai, S. Komaba, and N. Kumagai, Electrochemical and In Situ XAFS-XRD Investigation of Nb2O5 for Rechargeable Lithium Batteries. J. Electrochem. Soc. 153, A583 (2006).

    Article  CAS  Google Scholar 

  139. X. Qu, B. Xing, G. Huang, H. Zhao, Z. Jiang, C. Zhang, S.W. Hong, and Y. Cao, Facile Synthesis of Flower-like T-Nb2O5 Nanostructures as Anode Materials for Lithium-Ion Battery. J. Mater. Sci. Mater. Electron. 32, 875 (2020).

    Article  CAS  Google Scholar 

  140. X. Chen, K. Liu, Q. Qin, Z. Yu, M. Li, X. Qu, Y. Zhou, A. Dou, M. Su, and Y. Liu, High-Rate Capability of Carbon-Coated Micron-Sized Hexagonal TT-Nb2O5 Composites for Lithium-Ion Battery. Ceram. Int. 47, 15400 (2021).

    Article  CAS  Google Scholar 

  141. G. Zeng, H. Wang, J. Guo, L. Cha, Y. Dou, and J. Ma, Fabrication of Nb2O5/C Nanocomposites as a High Performance Anode for Lithium Ion Battery. Chin. Chem. Lett. 28, 755 (2017).

    Article  CAS  Google Scholar 

  142. J. Lin, Y. Yuan, Q. Su, A. Pan, S. Dinesh, C. Peng, G. Cao, and S. Liang, Facile syntheSis of Nb2O5/Carbon Nanocomposites as Advanced Anode Materials for Lithium-Ion Batteries. Electrochim. Acta 292, 63 (2018).

    Article  CAS  Google Scholar 

  143. R. Kang, S. Li, B. Zou, X. Liu, Y. Zhao, J. Qiu, G. Li, F. Qiao and J. Lian, Design of Nb2O5@rGO Composites to Optimize the Lithium-Ion Storage Performance. J. Alloys Compd. 865, (2021).

  144. X. Qu, Y. Liu, B. Li, B. Xing, G. Huang, H. Zhao, Z. Jiang, C. Zhang, S.W. Hong, and Y. Cao, Nanostructured T-Nb2O5-Based Composite With Reduced Graphene Oxide for Improved Performance Lithium-Ion Battery Anode. J. Mater. Sci. 55, 13062 (2020).

    Article  CAS  Google Scholar 

  145. C. Shi, K. Xiang, Y. Zhu, X. Chen, W. Zhou, and H. Chen, Preparation and Electrochemical Properties of Nanocable-Like Nb2O5/Surface-Modified Carbon Nanotubes Composites for Anode Materials in Lithium Ion Batteries. Electrochim. Acta 246, 1088 (2017).

    Article  CAS  Google Scholar 

  146. S. He, J. Zou, L. Chen, and Y. Chen, A nanostructured Ni/T-Nb2O5@Carbon Nanofibers as a Long-Life Anode Material for Lithium-Ion BATTERIES. Rare Met. 40, 374 (2020).

    Article  CAS  Google Scholar 

  147. R. Khatoon, Y. Guo, S. Attique, K. Khan, A.K. Treen, M.U. Haq, H. Tang, H. Chen, Y. Tian, M. Nisar, S.U. Din and J. Lu, Facile Synthesis of α-Fe2O3/Nb2O5 Heterostructure for Advanced Li-Ion Batteries. J. Alloys Compd. 837, (2020).

  148. K. Schneider, Optical Properties and Electronic Structure of V2O5, V2O3 and VO2. J. Mater. Sci. Mater. Electron. 31, 10478 (2020).

    Article  CAS  Google Scholar 

  149. F. Lv, H. Cheng, W. Nie, Q. Sun, Y. Liu, T. Duan, Q. Xu, and X. Lu, Enhancing Rate Capacity and Cycle Stability of LiNi1/3Co1/3Mn1/3O2 Cathode Material by Laminar V2O5 Coating for Lithium-Ion Batteries. ChemistrySelect 6, 6339 (2021).

    Article  CAS  Google Scholar 

  150. Z. Liu, Y. Huang, X. Wang, Y. Zhang, J. Ding, and Y. Guo, Synthesis of Li4Ti5O12/V2O5 Nanocomposites for Lithium-Ion Batteries by One-Pot co-Precipitation Method. J. Mater. Sci. Mater. Electron. 32, 12134 (2021).

    Article  CAS  Google Scholar 

  151. Y. Zhao, D. Gao, R. Guan, H. Li, N. Li, G. Li, and S. Li, Synthesis of a Three-Dimensional Cross-Linked Ni-V2O5 Nanomaterial in an Ionic Liquid for Lithium-Ion Batteries. RSC Adv. 10, 39137 (2020).

    Article  CAS  Google Scholar 

  152. Y. Tao, N. Yang, C. Liang, D. Huang, P. Wang, F. Cao, Y. Luo, and H. Chen, Phosphorus-Functionalized Fe2VO4/Nitrogen-Doped Carbon Mesoporous Nanowires with Exceptional Lithium Storage Performance. ChemElectroChem 7, 2395 (2020).

    Article  CAS  Google Scholar 

  153. H. Zheng, X. Chen, Y. Yang, L. Li, C. Feng, and S. Wang, Self-Assembled Uniform Double-Shelled Co3V2O8 Hollow Nanospheres as Anodes for High-Performance Li-Ion Batteries. Rare Met. 40, 3485 (2021).

    Article  CAS  Google Scholar 

  154. Z. Tariq, S.U. Rehman, J. Zhang, F.K. Butt, X. Zhang, B. Cheng, S. Zahra and C. Li, Hierarchical Mesoporous Nanoflowers of Zn2VO4 for High Capacity Anode in Lithium Ion Batteries. Mater. Sci. Semicond. Process. 123, (2021).

  155. Q. Geng, X. Su, F. Dong and Z. Wang, Two-Phase Solvothermal Synthesis of MoO2/RGO Nanocomposites for Lithium-Ion Battery Anodes. IOP Conference Series: Earth and Environmental Science 706, (2021).

Download references

Acknowledgments

The authors are grateful to the National Science Foundation of China (Nos. 21373074 and 61675061) and the Key R & D projects in Anhui Province (No. 202004a05020053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiping Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Ding, Y., Ma, Z. et al. Recent Progress on Nanostructured Transition Metal Oxides As Anode Materials for Lithium-Ion Batteries. J. Electron. Mater. 51, 3391–3417 (2022). https://doi.org/10.1007/s11664-022-09662-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09662-z

Keywords

Navigation