Skip to main content
Log in

A Microwave Dielectric Ceramic with Ultra-low Dielectric Constant Prepared by Reaction Sintering Method

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A CaO-Y2O3 microwave dielectric ceramic with large potential in the 5G field has been prepared using a reaction sintering method. The ceramic has an ultra-low dielectric constant, high Q, and near 0 τf. The reaction sintering method could shorten the stages of ceramic preparation, thereby reducing the factors of degradation of microwave dielectric properties caused by complex process fluctuations in the sintering process. The sample is composed of two phases, CaO and Y2O3 , the ceramic particles are closely connected, and the grain boundaries of the two grains are clear. When the sintering temperature is 1400°C, CaO-Y2O3 ceramics have the best microwave dielectric properties of εr = 4.30, Q×f = 33,360 GHz, τƒ =  − 13.79 ppm/°C, indicating that it is a good candidate in 5G devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. X. Zhou, H. Zhou, X. Luan, S. Hu, K. Wang, X. Wang, S. He, S. Zhou, J. Shi, and X. Chen, Structure and Dielectric Properties of Novel Series of 3CaO-RE2O3-2WO3 (RE =La, Nd and Sm) Microwave Ceramics and the Adjustment of Tau(f) Value. J. Mater. Sci.-Mater. Electron. 31, 14953–14960 (2020).

    Article  CAS  Google Scholar 

  2. K. Wang, H. Zhou, X. Zhou, X. Luan, S. Hu, J. Deng, S. Li, and X. Liu, High Relative Permittivity Bi4B2+xO9+3x/2 (x =1.5, 2, 2.5, 3 Microwave Ceramics for ULTCC Technology. Ceram. Int. 46, 13841–13847 (2020).

    Article  CAS  Google Scholar 

  3. K. Wang, T. Yin, H. Zhou, X. Liu, J. Deng, S. Li, C. Lu, and X. Chen, Bismuth Borate Composite Microwave Ceramics Synthesised by Different Ratios of H3BO3 for ULTCC Technology. J. Eur. Ceram. Soc. 40, 381–385 (2020).

    Article  CAS  Google Scholar 

  4. J. Chen, W. Fang, L. Ao, Y. Tang, J. Li, L. Liu, and L. Fang, Structure and Chemical Bond Characteristics of Two Low-ε Microwave Dielectric Ceramics LiBO2 (B =Ga, In) with Opposite τ. J. Eur. Ceram. Soc. 41, 3452–3458 (2021).

    Article  CAS  Google Scholar 

  5. D. Zhou, H.H. Guo, M.S. Fu, X.G. Yao, H.X. Lin, W.F. Liu, L.X. Pang, C. Singh, S. Trukhanov, A. TrukhanovI, and M. Reaney, Anomalous dielectric behaviour during the monoclinic to tetragonal phase transition in La(Nb0.9V0.1)O4. Inorgan. Chem. Front. 8, 156–163 (2021).

    Article  CAS  Google Scholar 

  6. H.H. Guo, D. Zhou, W.F. Liu, L.X. Pang, D.W. Wang, J.Z. Su, and Z.M. Qi, Microwave dielectric properties of temperature-stable zircon-type (Bi, Ce)VO4 solid solution ceramics. J. Am. Ceram. Soc. 103, 423–431 (2020).

    Article  CAS  Google Scholar 

  7. X. Wang, K. Wang, X. Luan, X. Zhou, S. Hu, S. Zhou, S. He, H. Zhang, X. Chen, and H. Zhou, Phase Structure and Microwave Dielectric Properties of 0.85(0.74CaTiO3-0.26SmAlO3)-0.15Ca1.15Sm0.85Al0.85Ti0.15O4 Composite Ceramics Prepared by Reaction-Sintering Process. J. Mater. Sci.-Mater. Electron. 32, 8863–8871 (2021).

    Article  CAS  Google Scholar 

  8. L. Yi, X.Q. Liu, L. Li, and X.M. Chen, SrLn2Al2O7 (Ln =La, Nd, Sm) Microwave Dielectric Ceramic New Materials. Int. J. Appl. Ceram. Technol. 10, E177–E185 (2013).

    Article  CAS  Google Scholar 

  9. S. Zhu, Z. Huang, W. Lou, K. Song, A. Khesro, F. Hussain, Z. Tan, X. Luo, M. Mao, L. Xue, P. Xu, B. Liu, H. Lin, and D. Wang, 5G Microstrip Patch Antenna and Microwave Dielectric Properties of 4 mol%LiF-MgO-xwt%MTiO3 (M =Ca, Sr) Composite Ceramics. J. Mater. Sci.-Mater. Electron. 32, 23880–23888 (2021).

    Article  CAS  Google Scholar 

  10. Y. Zhan, L. Li, Low-Permittivity and High-Q Value li2mg3ti1-x(Zn1/3NB2/3)xO6 Microwave Dielectric Ceramics for Microstrip Antenna Applications in 5G Millimeter Wave. J. Alloys Compound. 857 (2021).

  11. A. Ullah, H. Liu, A. Manan, A.S. Ahmad, P. Zhai, H. Hua, M. Cao, Z. Yao, A. Ullah, A. Jan, M. Emmanuel, and J. Iqbal, Microwave Dielectric Properties of Bi2(Li0.5Ta1.5)O7TiO2-Based Ceramics for 5G Cellular Base Station Resonator Application. Ceram. Int. 47, 8416–8423 (2021).

    Article  CAS  Google Scholar 

  12. Z. Tan, K. Song, H.B. Bafrooei, B. Liu, J. Wu, J. Xu, H. Lin, and D. Wang, The Effects of TiO2 Addition on Microwave Dielectric Properties of Y3MgAl3SiO12 Ceramic for 5G Application. Ceram. Int. 46, 15665–15669 (2020).

    Article  CAS  Google Scholar 

  13. H. B. Bafrooei, B. Liu, W. Su, K. X. Song, Ca3MgSi2O8: Novel Low-Permittivity microwave dielectric ceramics for 5G application. Materials Letters 2020, 263.

  14. X. Zhou, C. Sun, D. Xia, L. Cao, Z. Wen, S. Zhang, and B. Tang, Low-temperature sintering kinetics and dielectric properties of Ba5Nb4O15 with B2O3-SiO2 glass. J. Mater. Sci.-Mater. Electron. 32, 8716–8724 (2021).

    Article  CAS  Google Scholar 

  15. S. Yang, B. Liang, C. Liu, J. Liu, C. Fang, Y. Ai, Microwave Sintering and Microwave Dielectric Properties of (1-x)Ca0.61La0.26TiO3-xNd(Mg0.5Ti0.5)O3 Ceram. Mater. 14(2), (2021).

  16. X. Wang, L. Li, W.B. Hong, H. Yan, S.Y. Wu, and X.M. Chen, Preparation and Microwave Dielectric Properties of BPO4 Ceramics with Ultra-Low Dielectric Constant. J. Mater. Sci.-Mater. Electron. 32, 6660–6667 (2021).

    Article  CAS  Google Scholar 

  17. G. Wang, Q. Fu, P. Guo, M. Hu, H. Wang, S. Yu, Z. Zheng, and W. Luo, Crystal Structure, Spectra Analysis and Dielectric Characteristics of Ba4M28/3Ti18O54 (M =La, Pr, Nd, and Sm) Microwave Ceramics. Ceram. Int. 47, 1750–1757 (2021).

    Article  CAS  Google Scholar 

  18. F. Wang, Y. Lai, Y. Zeng, F. Yang, B. Li, X. Yang, H. Su, J. Han, and X. Zhong, Enhanced Microwave Dielectric Properties in Mg2Al4Si5O18 Through Cu2+ Substitution. Eur. J. Inorg. Chem. 2021, 2464–2470 (2021).

    Article  CAS  Google Scholar 

  19. Y. Qian, Q. Zhang, X. Tang, F. Huang, Y. Li, and H. Su, Sintering Characteristics and Microwave Dielectric Properties of Low-Temperature-Fired (1–x)Li3Mg2NbO6-xLi2WO4 Ceramics. J. Mater. Sci.-Mater. Electron. 32, 22450–22458 (2021).

    Article  CAS  Google Scholar 

  20. R. Peng, H. Su, Y. Li, Y. Lu, C. Yu, L. Shi, D. Chen, B. Liao, Microstructure and Microwave Dielectric Properties of Ni Doped Zinc Borate Ceramics for LTCC Applications. J. Alloys Compound. 868 (2021).

  21. S. Zhou, X. Luan, S. Hu, X. Zhou, S. He, X. Wang, H. Zhang, X. Chen, and H. Zhou, Sintering Behavior, Phase Structure and Microwave Dielectric Properties of CeO2 Added CaTiO3-SmAlO3 Ceramics Prepared by Reaction Sintering Method. Ceram. Int. 47, 3741–3746 (2021).

    Article  CAS  Google Scholar 

  22. S. He, K. Wang, X. Zhou, S. Hu, X. Luan, S. Zhou, X. Wang, X. Chen, and H. Zhou, Microwave Dielectric Properties of Ca1.15Sm0.85Al0.85Ti0.15O4 Ceramics Prepared by Reaction Sintering. Ceram. Int. 47, 15580–15584 (2021).

    Article  CAS  Google Scholar 

  23. T. Luo, Q. Yang, H. Yu, and J. Liu, Formation Mechanism and Microstructure Evolution of Ba2Ti9O20 Ceramics by Reaction Sintering Method. J. Am. Ceram. Soc. 103, 1079–1087 (2020).

    Article  CAS  Google Scholar 

  24. H. Yu, T. Luo, L. He, and J. Liu, Effect of ZnO on Mg2TiO4-MgTiO3-CaTiO3 Microwave Dielectric Ceramics Prepared by Reaction Sintering Route. Adv. Appl. Ceram. 118, 98–105 (2019).

    Article  CAS  Google Scholar 

  25. T. Luo, L. He, H. Yang, and H. Yu, Phase Evolution and Microwave Dielectric Properties of BaTi4O9 Ceramics Prepared by Reaction Sintering Method. Int. J. Appl. Ceram. Technol. 16, 146–151 (2019).

    Article  CAS  Google Scholar 

  26. I.N. Jawahar, P. Mohanan, and M.T. Sebastian, A5B4O15 (A =Ba, Sr, Mg, Ca, Zn; B =Nb, Ta) Microwave Dielectric Ceramics. Mater. Lett. 57, 4043–4048 (2003).

    Article  CAS  Google Scholar 

  27. T. Ting Ting, W. Li Xi, and Z. Qi Tu, Study on the Composite and Properties of Y2O3-TiO2 Microwave Dielectric Ceramics. J. Alloys Compd. 486, 606–609 (2009).

    Article  Google Scholar 

  28. M. Wei, Z. Ma, W. Xia, T. Tang, Z. Li, and L. Tian, Preparation and Microwave Dielectric Properties of New Co2NdNbO6 Ceramic Materials. Ferroelectrics 571, 139–145 (2021).

    Article  CAS  Google Scholar 

  29. X. Zhou, K. Wang, S. Hu, X. Luan, S. He, X. Wang, S. Zhou, X. Chen, and H. Zhou, Preparation, Structure and Microwave Dielectric Properties of Novel La2MgGeO6 Ceramics with Hexagonal Structure and Adjustment of Its τ Value. Ceram. Int. 47, 7783–7789 (2021).

    Article  CAS  Google Scholar 

  30. K. Wang, H. Zhou, X. Luan, S. Hu, X. Zhou, S. He, X. Wang, S. Zhou, and X. Chen, NaTaO3 Microwave Dielectric Ceramic a with High Relative Permittivity and as an Excellent Compensator for the Temperature Coefficient of Resonant Frequency. Ceram. Int. 47, 121–129 (2021).

    Article  CAS  Google Scholar 

  31. H.W. Gaoqun Zhang, J. Guo, L. He, and D. Wei, Ultra-Low Sintering Temperature Microwave Dielectric Ceramics Based on Na2O-MoO3 Binary System. J. Am. Ceram. Soc. 98, 528–533 (2015).

    Article  Google Scholar 

  32. M. R. J. Byoung Jik Jeong, Effect of Bi2O3 Doping on the Sintering Temperature and Microwave Dielectric Properties of LiAlSiO4 Ceramics. J. Am. Ceram. Soc. 1–3 (2012).

  33. M. Ohashi, H. Ogawa, and A. KanE, Tanaka, Microwave Dielectric Properties of Low-Temperature Sintered Li3AlB2O6 Ceramic. J. Eur. Ceram. Soc. 25, 2877–2881 (2005).

    Article  CAS  Google Scholar 

  34. M.T. Hanna, J. Juuti, and H. Jantunen, Dielectric Properties of Lithium Molybdate Ceramic Fabricated at Room Temperature. J. Am. Ceram. Soc. 97, 3378–3379 (2014).

    Article  Google Scholar 

  35. D. Zhou, L. Xia, P. Hongwang, J. Guo, G.Q. Zhang, X. Guangwu, L. Shui, and X. Yao, Microwave Dielectric Properties of Li2WO4 Ceramic with Ultra-Low Sintering Temperature. J. Am. Ceram. Soc. 94, 348–350 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by This study was supported by Natural Science Foundation of China (Nos. 61761015 and 11664008), Natural Science Foundation of Guangxi( Nos.2017GXNSFFA198011, 2018GXNSFFA050001 and 2017GXNSFDA198027), and High Level Innovation Team and Outstanding Scholar Program of Guangxi Institutes (Nos. 61761015 and 11664008), Natural Science Foundation of Guangxi (Nos. 2017GXNSFFA198011, 2018GXNSFFA050001 and 2017GXNSFDA198027), and High Level Innovation Team and Outstanding Scholar Program of Guangxi Institutes.

Funding

Natural Science Foundation of China ,61761015, huanfu zhou, Natural Science Foundation of Guangxi Province, 2017GXNSFFA198011, huanfu zhou, Guizhou science and technology planning project, [2021] General Items 123, Qing Li.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Liang or Huanfu Zhou.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, G., Wang, H., Li, Q. et al. A Microwave Dielectric Ceramic with Ultra-low Dielectric Constant Prepared by Reaction Sintering Method. J. Electron. Mater. 51, 5026–5031 (2022). https://doi.org/10.1007/s11664-022-09630-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09630-7

Keywords

Navigation