Skip to main content
Log in

Praseodymium-Containing Polyfluorene: Synthesis, Photoluminescence, and Electroluminescence

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A polyfluorene containing praseodymium complexes was synthesized with fluorene, phenanthroline, and praseodymium triisopropoxide units by way of the conventional coordination reaction and palladium-catalyzed Suzuki coupling reaction. The composition and structure of the polymers were identified by 1H NMR (nuclear magnetic resonance) spectra. The material is easy to dissolve in most common organic solvents and has high thermal stability, which is beneficial to the device preparation process. Optical characterizations including ultraviolet and visible (UV-vis) absorption spectra, photoluminescence, and electroluminescence of the target polymer were recorded and analyzed to investigate the effects of Pr triisopropoxide. The optoelectronic devices obtained were measured with the configuration ITO/PEDOT:PSS/polymer/TPBi/LiF/Al based on the resulting polymer as an emissive layer. The results show that the praseodymium triisopropoxide complexes in the polymer structure tuned the emission color and improved the performance of the optoelectronic device. Therefore, this technique can provide an inexpensive and straightforward method for the synthesis of lanthanide-complexed copolymer applied in the field of organic optoelectronic materials.

Graphical Abstract

A praseodymium (Pr)-bonded polymer with fluorene, phenanthroline, and Pr triisopropoxide in the main chain was synthesized via coordination reaction and Suzuki reaction. The photoluminescence and electroluminescence properties of the polymer were studied to explore the effects of Pr triisopropoxide. The introduction of Pr triisopropoxide into the polymer tuned the emission color and improved the performance of the optoelectronic device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P. Tao, Y. Miao, H. Wang, B. Xu, and Q. Zhao, High-performance organic electroluminescence: design from organic light-emitting materials to devices. Chem. Rec. 19, 1531 (2019).

    Article  CAS  Google Scholar 

  2. S. Wang, H. Zhang, B. Zhang, Z. Xie, and W.Y. Wong, Towards high-power-efficiency solution-processed OLEDs: material and device perspectives. Mat. Sci. Eng. R. 140, 100547 (2020).

    Article  Google Scholar 

  3. Z. Chen, C.L. Ho, L. Wang, and W.Y. Wong, Single-molecular white-light emitters and their potential WOLED applications. Adv. Mater. 32, e1903269 (2020).

    Article  CAS  Google Scholar 

  4. C.L. Ho and W.Y. Wong, Charge and energy transfers in functional metallophosphors and metallopolyynes. Coord. Chem. Rev. 257, 1614 (2013).

    Article  CAS  Google Scholar 

  5. C. Fan and C. Yang, Yellow/orange emissive heavy-metal complexes as phosphors in monochromatic and white organic light-emitting devices. Chem. Soc. Rev. 43, 6439 (2014).

    Article  CAS  Google Scholar 

  6. J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burns, and A.B. Holmes, Light-emitting-diodes based on conjugated polymers. Nature 347, 539 (1990).

    Article  CAS  Google Scholar 

  7. J. Tao, R. Wang, H. Yu, L. Chen, D. Fang, Y. Tian, J. Xie, D. Jia, H. Liu, J. Wang, F. Tang, L. Song, and H. Li, Highly transparent, highly thermally stable nanocellulose/polymer hybrid substrates for flexible OLED devices. ACS Appl. Mater. Interfaces 12, 9701 (2020).

    Article  CAS  Google Scholar 

  8. D. Yin, J. Feng, R. Ma, Y.F. Liu, Y.L. Zhang, X.L. Zhang, Y.G. Bi, Q.D. Chen, and H.B. Sun, Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process. Nat. Commun. 7, 11573 (2016).

    Article  CAS  Google Scholar 

  9. X. Huang, Y. Qu, D. Fan, J. Kim, and S.R. Forrest, Ultrathin, lightweight and flexible organic light-emitting devices with a high light outcoupling efficiency. Org. Electron. 69, 297 (2019).

    Article  CAS  Google Scholar 

  10. M. Eritt, C. May, K. Leo, M. Toerker, and C. Radehaus, OLED manufacturing for large area lighting applications. Thin Solid Films 518, 3042 (2010).

    Article  CAS  Google Scholar 

  11. N.C. Greenham, S.C. Moratti, D.D.C. Bradley, R.H. Friend, and A.B. Homles, Efficient light-emitting diodes based on polymers with high electron affinities. Nature 365, 628 (1993).

    Article  CAS  Google Scholar 

  12. M. Buschel, A. Ajayaghosh, J. Eldo, and J. Daub, Controlling the growth of conjugated polymers on electrode surface: synthesis, electropolymerization, and spectroelectrochemistry of conjugated bispyrroles. Macromolecules 35, 8405 (2002).

    Article  CAS  Google Scholar 

  13. K.B. Anand, A. Ashish, A.K. Tripathi, Y.N. Mohapatra, and A. Ajayaghosh, Synthesis, photophysical, and electroluminescent properties of arylenevinylenes-co-pyrrolenevinylenes derived from divinylaryl bridged bispyrroles. Macromolecules 40, 2657 (2007).

    Article  CAS  Google Scholar 

  14. Y.H. Kim, J.C. Park, H.J. Kang, J.W. Park, H.S. Kim, J.H. Kim, and S.K. Kwon, Synthesis and characterization of nw blue light emitting alternating terphenylenevinylene carbazylenevinylene copolymer. Macromol. Res. 13, 403 (2005).

    Article  CAS  Google Scholar 

  15. Q.P. Yang, and Y. Yang, Efficient photoluminescence and electroluminescence from a soluble polyfluorene. J. Am. Chem. Soc. 118, 7416 (1996).

    Article  Google Scholar 

  16. K. Junji and O. Yoshi, Organo lanthanide metal complexes for electroluminescent materials. Chem. Rev. 102, 2357 (2002).

    Article  CAS  Google Scholar 

  17. Y. Miao, P. Tao, K. Wang, H. Li, B. Zhao, L. Gao, H. Wang, B. Xu, and Q. Zhao, Highly efficient red and white Organic light-emitting diodes with external quantum efficiency beyond 20% by employing pyridylimidazole-based metallophosphors. ACS Appl. Mater. Interfaces 9, 37873 (2017).

    Article  CAS  Google Scholar 

  18. J.S. Huh, M.J. Sung, S.K. Kwon, Y.H. Kim, and J.J. Kim, Highly efficient deep blue phosphorescent OLEDs based on tetradentate Pt(II) complexes containing adamantyl spacer groups. Adv. Funct. Mater. 31, 2100967 (2021).

    Article  CAS  Google Scholar 

  19. P. Tao, W.L. Li, J. Zhang, S. Guo, Q. Zhao, H. Wang, B. Wei, S.J. Liu, X.H. Zhou, Q. Yu, B.S. Xu, and W. Huang, Facile synthesis of highly efficient lepidine-based phosphorescent Iridium(III) complexes for yellow and white organic light-emitting diodes. Adv. Funct. Mater. 26, 881 (2016).

    Article  CAS  Google Scholar 

  20. P. Tao, X.K. Zheng, X.Z. Wei, M.T. Lau, Y.K. Lee, Z.K. Li, Z.L. Guo, F.Q. Zhao, X. Liu, S.J. Liu, Q. Zhao, Y.Q. Miao, and W.Y. Wong, Chlorinated yellow phosphorescent cyclometalated neutral iridophosphors featuring broad emission bandwidths for white electroluminescence. Mater. Today Energy 21, 100773 (2021).

    Article  CAS  Google Scholar 

  21. X. Wang, T. Peng, C. Nguyen, Z.H. Lu, N. Wang, W. Wu, Q. Li, and S. Wang, Highly efficient deep-blue electrophosphorescent Pt(II) compounds with non-distorted flat geometry: tetradentate versus macrocyclic chelate ligands. Adv. Funct. Mater. 27, 1604318 (2017).

    Article  CAS  Google Scholar 

  22. C.L. Ho, and W.Y. Wong, Metal-containing polymers: facile tuning of photophysical traits and emerging applications in organic electronics and photonics. Coord. Chem. Rev. 255, 2469 (2011).

    Article  CAS  Google Scholar 

  23. D.M.E. Freeman, G. Tregnago, S.A. Rodriguez, K.J. Fallon, F. Cacialli, and H.J. Bronstein, Deep-red electrophosphorescence from a platinum(II)–porphyrin complex copolymerised with polyfluorene for efficient energy transfer and triplet harvesting. Org. Semicond. 3, 1 (2015).

    Article  CAS  Google Scholar 

  24. H. Xu, R. Chen, Q. Sun, W. Lai, Q. Su, W. Huang, and X. Liu, Recent progress in metal-organic complexes for optoelectronic applications. Chem. Soc. Rev. 43, 3259 (2014).

    Article  CAS  Google Scholar 

  25. Q. Zhao, S.J. Liu, and W. Huang, Promising optoelectronic materials: polymers containing phosphorescent Iridium(III) complexes. Macromol. Rapid Commun. 31, 794 (2010).

    Article  CAS  Google Scholar 

  26. H. Shi, T. Tsuboi, S. Liu, Z. An, Q. Zhao, and W. Huang, Multi-color poly(fluorenylene ethynylene)s with on-chain phosphorescent Iridium(III) complexes through energy transfer. Inorg. Organomet. Polym. 25, 720 (2014).

    Article  CAS  Google Scholar 

  27. P.K. Ng, X. Gong, S.H. Chan, L.S.M. Lam, and W.K. Chan, The role of Ruthenium and Rhenium diimine complexes in conjugated polymers that exhibit interesting opto-electronic properties. Chem. Eur. J. 7, 4358 (2001).

    Article  CAS  Google Scholar 

  28. M.J. Yang, L.C. Zeng, and Q.H. Zhang, Novel ternary copolymer containing both Tb(III) and Eu(III) complexes for white-light electroluminescence. J. Mater. Sci. 39, 1407 (2004).

    Article  CAS  Google Scholar 

  29. W.G. Zhang, L. Qin, and S.M. Zhao, White electroluminescence using Eu-complexed copolymer as the red unit. Adv. Mater. Res. 760–762, 741 (2013).

    Google Scholar 

  30. L.N. Bochkarev, A.V. Rozhkov, and M.N. Bochkarev, Electroluminescent lanthanide-containing polymers. Polym. Sci. Ser. C 56, 59 (2014).

    Article  CAS  Google Scholar 

  31. Q.D. Ling, M.J. Yang, Z.F. Wu, X.M. Zhang, L.H. Wang, and W.G. Zhang, A novel high photoluminescence efficiency polymer incorporated with pendant europium complexes. Polymer 42, 4605 (2001).

    Article  CAS  Google Scholar 

  32. L.H. Wang, W. Wang, W.G. Zhang, E.T. Kang, and W. Huang, Synthesis and luminescence properties of novel Eu-containing copolymers consisting of Eu(III)-acrylate-â-diketonate complex monomers and methyl methacrylate. Chem. Mater. 12, 2212 (2000).

    Article  CAS  Google Scholar 

  33. Q.D. Ling, E.T. Kang, K.G. Neoh, and W. Huang, Synthesis and nearly monochromatic photoluminescence properties of conjugated copolymers containing fluorene and rare earth complexes. Macromolecules 36, 6995 (2003).

    Article  CAS  Google Scholar 

  34. W. Lv, W. Wang, C.L. Zhang, Y. Zhao, H.Y. Zhen, and Q.D. Ling, Synthesis and photoelectric properties of new Pr-bonded polymers by coordination of isopropyloxide and bipyridine unit. Chin. J. Polym. Sci. 35, 342 (2017).

    Article  CAS  Google Scholar 

  35. W. Lv, H. Liu, W. Wang, E. Yang, H.Y. Zhen, and Q.D. Ling, Synthesis of new conjugated polymers with coordinated praseodymium complexes for polymer memory devices. RSC Adv. 7, 18384 (2017).

    Article  CAS  Google Scholar 

  36. X.C. Lin, C. Wang, Q.M. Chen, E. Yang, W. Lv, W. Wang, and Q.D. Ling, Synthesis of novel Pr-bonded polymers with phenanthroline units for polymer memory devices. Chem. Lett. 48, 1433 (2019).

    Article  CAS  Google Scholar 

  37. S. Schöne, T. Radoske, J. März, T. Stumpf, and A. Ikeda-Ohno, Synthesis and characterization of heterometallic iron–uranium complexes with a bidentate N-donor ligand (2,2′-bipyridine or 1,10-phenanthroline). Inorg. Chem. 57, 13318 (2018).

    Article  CAS  Google Scholar 

  38. B. Happ, A. Winter, M.D. Hager, and U.S. Schubert, Photogenerated avenues in macromolecules containing Re(I), Ru(II), Os(II), and Ir(III) metal complexes of pyridine-based ligands. Chem. Soc. Rev. 41, 2222 (2012).

    Article  CAS  Google Scholar 

  39. S. Wang, H. Yao, D. Wu, Z. Lin, and Q. Ling, Highly efficient white emission from UV-driven hybrid LEDs through down-conversion of arylmaleimide-based branched polymers. J. Lumin. 230, 117742 (2021).

    Article  CAS  Google Scholar 

  40. K. Li, G. Cheng, C. Ma, X. Guan, W.-M. Kwok, Y. Chen, W. Lu, and C.-M. Che, Light-emitting platinum(ii) complexes supported by tetradentate dianionic bis(N-heterocyclic carbene) ligands: towards robust blue electrophosphors. Chem. Sci. 4, 2630 (2013).

    Article  CAS  Google Scholar 

  41. J.M. Lupton, D.W. Samuel, R. Beavington, P.L. Burn, and H. Bässler, Control of charge transport and intermolecular interaction in organic light-emitting diodes by dendrimer generation. Adv. Mater. 13, 258 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supports by the National Natural Science Foundation of China (Grant No. 22075044 and 21574021), the Natural Science Foundation of Fujian Province (Grant No. 2018J01670), the Program of the Education Department of Fujian Province (Grant No. JAT170129), and the Scientific Research Starting Foundation for researchers with PhD of Fujian Normal University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Lv or Qidan Ling.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 429 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Wei, J., Wang, D. et al. Praseodymium-Containing Polyfluorene: Synthesis, Photoluminescence, and Electroluminescence. J. Electron. Mater. 51, 3736–3744 (2022). https://doi.org/10.1007/s11664-022-09619-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09619-2

Keywords

Navigation