Skip to main content
Log in

Structural, Optical and Electrical Properties of Band-Aligned CdBr2/Au/Ga2S3 Interfaces and Their Application As Band Filters Suitable for 5G Technologies

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Herein, the structural, optical and electrical properties of band-aligned CdBr2/Ga2S3 interfaces in the presence and absence of Au nanosheets (10-20 nm) as interface spacers are reported. CdBr2/Au/Ga2S3 (CAG) stacked layers are grown by vacuum evaporation under a vacuum pressure of 10-5 mbar. It is observed that coating of amorphous Ga2S3 onto CdBr2 increases the crystallite size and decreases the microstrain, defect density and stacking faults in hexagonal CdBr2. Depositing Ga2S3 onto CdBr2 enhanced the light absorbability of Ga2S3 by more than 120 times. Insertion of Au nanosheets as spacers between the Ga2S3 and CdBr2 layers highly engineered the energy band gap of the CAG structure. In addition, the frequency-dependent capacitance, conductance and impedance spectroscopy analyses in the microwave frequency domain have shown the ability of the CAG structure to reveal negative capacitance effect and the ability to behave as microwave resonators displaying controllable (by Au nanosheets) resonance-antiresonance phenomena. CAG bilayers showed microwave band pass/reject characteristics with tunable and multiband features. The microwave cutoff frequency at the notch frequency of the band filters are found to suitable for the 5G mobile technologies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. S.E. Tsoeu, F. Opoku, and P.P. Govender, Tuning the electronic, optical and structural properties of GaS/C 2 N van der Waals heterostructure for photovoltaic application first-principle calculations. SN Appl. Sci. 2, 1 (2020).

    Article  Google Scholar 

  2. A.G. Guseinov, V.M. Salmanov, R.M. Mamedov, A.A. Salmanova, and F.M. Akhmedova, Optical and photoelectric properties of GaS thin films and GaS/InSe heterostructure. Opt. Spectrosc. 126, 458 (2019).

    Article  CAS  Google Scholar 

  3. N.M. Khusayfan, A.F. Qasrawi, and H.K. Khanfar, Design and characterization of Au/In4Se3/Ga2S3/C field effect transistors. Results Phys. 8, 1239 (2018).

    Article  Google Scholar 

  4. S. Zou, G. Yang, T. Pang, M. Zou, R. Liu, B. Chen, B. Jia, and B. Zou, One-step synthesis of nail-like Mn-doped CdS/CdBr 2 hetero-nanostructures for potential lasing application. Nanotechnology 30, 075605 (2018).

    Article  Google Scholar 

  5. J. Wright, Environmental chemistry (London: Routledge, 2004).

    Book  Google Scholar 

  6. J.Y. Yang, J. Ma, C.H. Lee, and G. Yoo, Polycrystalline/amorphous HfO 2 bilayer structure as a gate dielectric for β-Ga 2 O 3 MOS capacitors. IEEE Trans. Electron Devices 68, 1011 (2021).

    Article  CAS  Google Scholar 

  7. O. Madelung, II-VII 2 compounds, In Semiconductors Data Handbook, (Springer, Berlin, 2004).

  8. B. Kumar and G.C. Trigunayat, Polytypism and related phenomena in CdBr 2-doped dendritic single crystals of cadmium iodide. Acta Crystallographica Section A Found. Crystallogr. 54, 682 (1998).

    Article  Google Scholar 

  9. M.A. Wahab and K.M. Wahab, Genesis of rhombohedral structures and mode of polytype transformations in close packing of identical atoms. Mater. Focus 7, 321 (2018).

    Article  CAS  Google Scholar 

  10. S.R. Alharbi and A.F. Qasrawi, Effects of Au nanoslabs on the performance of CdO thin films designed for optoelectronic applications. Physica E Low-dimens. Syst. Nanostruct. 125, 114386 (2021).

    Article  CAS  Google Scholar 

  11. F. Wang, L. Jia, Y. Ding, H.I. Cai, W. Zheng, and F. Huang, Ultra-Long Van Der Waals CdBr 2 Micro/Nanobelts. Small Methods 4, 2000501 (2020).

    Article  CAS  Google Scholar 

  12. A.F. Qasrawi, Investigation of the structural and optoelectronic properties of the Se/Ga2S3 heterojunctions. J. Alloy. Compd. 769, 78 (2018).

    Article  CAS  Google Scholar 

  13. R.W.H. Small, and I.J. Worrall, Structure of bis [dibromo (1, 4-dioxane) gallium], Acta Crystallographica section B structural crystallography and crystal. Chemistry 38, 250 (1982).

    Google Scholar 

  14. J. Zhang, M. Pan, J. Zhang, B. Kang, and C. Su, Syntheses, structures and bioactivities of cadmium (II) complexes with a tridentate heterocyclic N-and S-ligand. Inorg. Chim. Acta 362, 3519 (2009).

    Article  CAS  Google Scholar 

  15. K.P. McKenna, Self-healing of broken bonds and deep gap states in Sb2Se3 and Sb2S3. Adv. Electron. Mater. 7, 2000908 (2021).

    Article  CAS  Google Scholar 

  16. L. Gahramanli, M. Muradov, Á. Kukovecz, O. Balayeva, and G. Eyvazova, Influence of stabilizers on the structure and properties of Cd x Zn1–x S nanoparticles by sonochemical method. Inorg. Nano-Metal Chem. 50, 808 (2020).

    Article  CAS  Google Scholar 

  17. W. Liu, B. Etschmann, D. Testemale, J. Hazemann, K. Rempel, H. Müller, and J. Brugger, Gold transport in hydrothermal fluids Competition among the Cl−, Br−, HS− and NH3 (aq) ligands. Chem. Geol. 376, 11 (2014).

    Article  CAS  Google Scholar 

  18. C.V. Thompson and R. Carel, Stress and grain growth in thin films. J. Mech. Phys. Solids 44, 657 (1996).

    Article  CAS  Google Scholar 

  19. O.M. Hemeda, A. Tawfik, A.M. Dorgham, and M.A. Hamad, The effect of Zr content on the thermal stability, dielectric and pyroelectric behavior for lead zirconate prepared by tartrate precursor method. Appl. Phys. A 125, 1 (2019).

    Article  Google Scholar 

  20. M. Jlassi, I. Sta, M. Hajji, and H. Ezzaouia, Effect of nickel doping on physical properties of zinc oxide thin films prepared by the spray pyrolysis method. Appl. Surf. Sci. 301, 216 (2014).

    Article  CAS  Google Scholar 

  21. I. Caraman, I Evtodiev, L. Palachi, V. Nedeff, L. Leontie, O. Racovet, D. Untila and E. Vatavu, In 2nd International Conference on Nanotechnologies and Biomedical Engineering, (2013) p.97-101.

  22. Y. Zheng, X. Tang, W. Wang, L. Jin, and G. Li, Large-size ultrathin α-Ga2S3 nanosheets toward high-performance photodetection. Adv. Func. Mater. 31, 2008307 (2021).

    Article  CAS  Google Scholar 

  23. M. Chu, W. Liao, R. Horng, T. Tsai, T. Wu, S. Liu, M. Wu, and R. Lin, Growth and characterization of p-InGaN/i-InGaN/n-GaN double-heterojunction solar cells on patterned sapphire substrates. IEEE Electron Dev. Lett. 32, 922 (2011).

    Article  CAS  Google Scholar 

  24. D. Das and D. Kar, Structural studies of n-type nc-Si–QD thin films for nc-Si solar cells. J. Phys. Chem. Solids 111, 115 (2017).

    Article  CAS  Google Scholar 

  25. R. Yang, N. Liang, X. Chen, L. Wang, G. Song, Y. Ji, N. Ren, Y. Lü, J. Zhang, and X. Yu, Sn/Sn 3 O 4–x heterostructure rich in oxygen vacancies with enhanced visible light photocatalytic oxidation performance. Int. J. Miner. Metall. Mater. 28, 150 (2021).

    Article  Google Scholar 

  26. S.E. Al Garni and A.F. Qasrawi, Effect of lithium nanosandwiching on the structural, optical and dielectric performance of MoO3. Physica E Low-dimens. Syst. Nanostruct. 114, 113569 (2019).

    Article  CAS  Google Scholar 

  27. K.C. Yung, H. Liem, and H.S. Choy, Enhanced redshift of the optical band gap in Sn-doped ZnO free standing films using the sol–gel method. J. Phys. D Appl. Phys. 42, 85002 (2009).

    Article  Google Scholar 

  28. J.I. Pankove, Optical processes in semiconductors (New York: Dover publicstions, 1975).

    Google Scholar 

  29. A.F. Qasrawi and A. Omar, Effects of indium slabs on the structural and electrical properties of stacked layers of Cu2O. J. Ovonic Res. 16, 83 (2020).

    CAS  Google Scholar 

  30. D.M. Pozar, Microwave engineering, 4th ed., (USA: Wiley, 2011).

    Google Scholar 

  31. A.I. Goroshko, "Potentialities of a high energy transfer through metal-dielectric waveguides in the terahertz-frequency band. Telecommun. Radio Eng. 67, 1131 (2008).

    Article  Google Scholar 

  32. X. Wu, E.S. Yang, and H.L. Evans, Negative capacitance at metal-semiconductor interfaces. J. Appl. Phys. 68, 2845 (1990).

    Article  CAS  Google Scholar 

  33. S.E. Al Garni and A.F. Qasrawi, Tunable Au/Ga 2 S 3/Yb varactor diodes designed for high frequency applications. Chalcogenide Lett. 14, 381 (2017).

    CAS  Google Scholar 

  34. A.E. Bekheet, Ac conductivity and dielectric properties of Ga2S3–Ga2Se3 films. Physica B 403, 4342 (2008).

    Article  CAS  Google Scholar 

  35. S. E. Algarni, A. F. Qasrawi, and N. M. Khusayfan, Design and characterization of ZnSe/GeO2 heterojunctions as bandstop filters and negative capacitance devices, Physica Status Solidi (a) 218, 2000830 (2021) .

  36. H. Ye, W. Dai, X. Chen, H. Zhang, S. Bie, and J. Jiang, High-selectivity frequency-selective rasorber based on low-profile bandpass filter. IEEE Antennas Wirel. Propag. Lett. 20, 150 (2020).

    Article  Google Scholar 

  37. Y. Cho, Ch. Park, and S. Yun, 0.7–1.0-GHz switchable dual-/single-band tunable bandpass filter using a switchable J-Inverter. IEEE Access 9, 16967 (2021).

    Article  Google Scholar 

  38. R. Pawlak, P. Krawiec, and J. Żurek, On measuring electromagnetic fields in 5G technology. IEEE Access 7, 29826 (2019).

    Article  Google Scholar 

  39. R. Bajracharya, R. Shrestha, and H. Jung, Future is unlicensed Private 5G unlicensed network for connecting industries of future. Sensors 20, 2774 (2020).

    Article  Google Scholar 

  40. O. Fernández, T. Fernández, and Á. Gómez, Compact low-cost filter for 5G interference reduction in UHF broadcasting band. Electronics 10, 974 (2021).

    Article  Google Scholar 

  41. K. Steeples and E. Tsidilkovski, In AIP Conference Proceedings, vol. 866, (2006) p. 558-561

Download references

Acknowledgments

This work was funded by the deanship of scientific research at the Arab American University, Jenin camp, Palestine, under project number Cycle I 2020-2021. It is also supported by the scientific research council at University of Istinye, Istanbul. Turkey. The authors would like to thank Assoc. Prof. Dr. Tarek S. Kayed for his help in evaluating Reitveld method analysis.

Funding

This study was funded by the Deanship of Scientific Research (DSR), Arab American University, Palestine, and by the University of Istinye, Istanbul. Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Qasrawi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qasrawi, A.F., Hamarsheh, A.A. Structural, Optical and Electrical Properties of Band-Aligned CdBr2/Au/Ga2S3 Interfaces and Their Application As Band Filters Suitable for 5G Technologies. J. Electron. Mater. 51, 3693–3704 (2022). https://doi.org/10.1007/s11664-022-09616-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09616-5

Keywords

Navigation