Skip to main content
Log in

Optimization with Taguchi Approach to Prepare Pure TiO2 Thin Films for Future Gas Sensor Application

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this present work, we applied Taguchi’s plan of experimentation as a numerical tool to develop a TiO2 gas sensor. This plan permits us to reduce the number of experimentations and obtain the optimal conditions of factors involved in the development of the sensitive layer. The focal concept is to optimize the TiO2 thin film conductivity by using an L9 (33) orthogonal array based on three important factors of spray pyrolysis deposition (A, concentration of [Ti4+]; B, deposition temperature; and C, spray pyrolysis time). These factors are varied to select the best deposition conditions and to obtain the best conductivity of TiO2 thin films. From the calculation of signal-to-nose ratio (S/N) and the analysis of variance (ANOVA) based on the conductivity values of thin films, the optimal combination of factors is A2B3C3, which corresponds to the concentration [Ti4+] = 0.3 kmol/m3, the deposition temperature T = 500°C and the spray time = 15 min. The validation test confirmed that this combination of deposition parameters is the most optimal to improve the most important TiO2 thin film properties. X-ray diffraction shows a high privileged direction along the (101) plane, large crystallite size of 21.43 nm and low dislocation density of 2.17 × 10−3 nm−2. The Raman modes located at 143 cm−1, 391 cm−1, 512 cm−1 and 633 cm−1 confirmed the purity of anatase TiO2. The images of scanning electron microscopy showed the growth of compact and granular film with an average of grain size of 66.76 nm. The optical analysis showed a transparent semiconductor with large band gap of 3.33 eV. The electrical measurement displayed a good conductivity of TiO2 equal to 280.06 × 10−6 (S m−1). These outcome properties make TiO2 thin film an attractive material for gas sensor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10.
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. T.T.N. Hoa, D.T.T. Le, N.V. Toan, N.V. Duy, C.M. Hung, N.V. Hieu, and N.D. Hoa, Highly selective H2S gas sensor based on WO3-coated SnO2 nanowires. Mater. Today Commun. 26, 102094 (2021).

    Article  CAS  Google Scholar 

  2. S.P. Chang, R.H. Yang, and C.H. Lin, Development of indium titanium zinc oxide thin films used as sensing layer in gas sensor applications. Coatings 11, 807 (2021).

    Article  CAS  Google Scholar 

  3. S. Bhadra, V.S. Bebarta, T.B. Hendry-Hofer, D.S. Lippner, J.N. Winborn, G.A. Rockwood, and B.A. Logue, Analysis of the soil fumigant, dimethyl disulfide, in swine blood by dynamic headspace gas chromatography-mass spectroscopy. J. Chromatogr. A 1638, 461856 (2021).

    Article  CAS  Google Scholar 

  4. Y. Kong, Y. Li, X. Cui, L. Su, D. Ma, T. Lai, L. Yao, X. Xiao,Y. Wang, SnO2 nanostructured materials used as gas sensors for the detection of hazardous and flammable gases: a review. Nano Mat. Sci. 2589–9651 (2021)

  5. A. Moumen, D. Zappa, N. Poli, and E. Comini, Catalyst – assisted vapor liquid solid growth of α-Bi2O3 nanowires for acetone and ethanol detection. Sens. Actuator B-Chem. 346, 130432 (2021).

    Article  CAS  Google Scholar 

  6. D. Nagmani, A. Pravarthana, T.C. Tyagi, W. Jagadale, and D.K. Prellier, Highly sensitive and selective H2S gas sensor based on TiO2 thin films. Appl. Surf. Sci. 549, 149281 (2021).

    Article  CAS  Google Scholar 

  7. S. Li, X. Wei, S. Zhu, Q. Zhou, and Y. Gui, Low temperature carbon monoxide gas sensor based on Co3O4@TiO2 nanocomposites: Theoretical and experimental analysis. J. Alloys Compd. 882, 160710 (2021).

    Article  CAS  Google Scholar 

  8. M. Yin, and Z. Zhu, Mesoporous NiO as an ultra-highly sensitive and selective gas sensor for sensing of trace ammonia at room temperature. J. Alloys Compd. 789, 941 (2019).

    Article  CAS  Google Scholar 

  9. K. Lingaraju, R.B. Basavaraj, K. Jayanna, S. Bhavana, S. Devaraja, H.M.K. Swamy, G. Nagaraju, H. Nagabhushana, and H. Raja Naika, Biocompatible fabrication of TiO2 nanoparticles: antimicrobial, anticoagulant, antiplatelet, direct hemolytic and cytotoxicity properties. Inorg. Chem. Commun. 127, 108505 (2021).

    Article  CAS  Google Scholar 

  10. X. Jinlei, W. Shufang, J. Jingpeng, and P. Tianyou, Preparation of brookite TiO2 nanoparticles with small sizes and the improved photovoltaic performance of brookite-based dye-sensitized solar cells. Nanoscale 8, 18771 (2016).

    Article  Google Scholar 

  11. Z. Li, Z.J. Yao, A.A. Haidry, T. Plecenik, L.J. Xie, L.C. Sun, and Q. Fatima, Resistive-type hydrogen gas sensor based on TiO2: a review. Int. J. Hydrog. Energy 43, 21114 (2018).

    Article  CAS  Google Scholar 

  12. W. Zhang, D. Shen, Z. Liu, N.L. Wu, and M. Wei, Brookite TiO2 mesocrystals with enhanced lithium-ion intercalation properties. Chem. Commun. 54, 11491 (2018).

    Article  CAS  Google Scholar 

  13. M.J. Paik, Y. Lee, H.S. Yun, S.U. Lee, S.T. Hong, and S.I. Seok, TiO2 colloid-spray coated elecron-transporting layers for efficient perovskite solar cells. Adv. Energy Mater. 10, 39 (2020).

    Article  CAS  Google Scholar 

  14. H. Chen, Y. Liu, C. Xie, J. Wu, D. Zeng, and Y. Liao, A comparative study on UV light activated porous TiO2 and ZnO film sensors for gas sensing at room temperature. Ceram. Int. 38, 503 (2012).

    Article  CAS  Google Scholar 

  15. E. Balázs, K. Ego, R. Krishnan, and J. Csaba, ne-step electrodeposition of nanocrystalline TiO2 films with enhanced photoelectrochemical performance and charge storage. ACS Appl. Energy Mater. 1, 851 (2018).

    Google Scholar 

  16. O.-G. Simionescu, C. Romanit, O. Tutunaru, V. Ion, O. Buiu, and A. Avram, RF magnetron sputtering deposition of TiO2 thin films in a small continuous oxygen flow rate. Coatings 9, 2079 (2019).

    Article  CAS  Google Scholar 

  17. R. Agarwal, S.L. Patel, S. Chander, C. Ameta, and M.S. Dhaka, Understanding the physical properties of thin TiO2 films treated in different thermal atmospheric conditions. Vacuum 177, 109347 (2020).

    Article  CAS  Google Scholar 

  18. J. Leng, Z. Wang, J. Wang, Wu. Hong-Hui, G. Yan, X. Li, H. Guo, Y. Liu, Q. Zhang, and Z. Guo, Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion. Chem. Soc. Rev 48, 3015–3072 (2019).

    Article  CAS  Google Scholar 

  19. M. Sahoo, A.K. Yadav, S. Ghosh, S.N. Jha, D. Bhattacharyya, and T. Mathews, Structural studies of spray pyrolysis synthesized oxygen deficient anatase TiO2 thin films by using x-ray absorption spectroscopy. Phys. Chem. Chem. Phys. 21, 6198 (2019).

    Article  CAS  Google Scholar 

  20. P. Yoboué, A. Kouakou, P. Kamagaté, F. Menini, V. Mesnilgrente, and N. Conédéra, Fabre, controlled ZnO deposits for gas sensors. Int. J. Mater. Eng. Technol 18, 55 (2019).

    Article  Google Scholar 

  21. T.J. Hsueh, and S.S. Wu, Highly sensitive Co3O4 nanoparticles/MEMS NO2 gas sensor with the adsorption of the Au nanoparticles. Sens. Actuators B Chem. 329, 129201 (2021).

    Article  CAS  Google Scholar 

  22. A. Ziti, B. Hartiti, H. Labrim, S. Fadili, M. Tahri, A. Belafhaili, A. Ridah, and P. Thevenin, Application of Taguchi method to optimize the sol–gel dip-coating process of the semiconductor Cu2ZnSnS4 with good optical properties. J. Sol-Gel Sci. Technol. 91, 364 (2019).

    Article  CAS  Google Scholar 

  23. H. Absike, Z. Essalhi, H. Labrim, B. Hartiti, N. Baaalla, M. Tahiri, B. Jaber, and H. Ezzahraouy, Synthesis of CuO thin films based on taguchi design for solar absorber. Opt. Mater. 118, 111224 (2020).

    Article  CAS  Google Scholar 

  24. S. Elfarrass, B. Hartiti, A. Ridah, and P. Thevenin, Optimization of parameters for deposition of In2S3 films by spray pyrolysis using taguchi method. Cryst. Liq. Cryst. 628, 139–144 (2016).

    Article  CAS  Google Scholar 

  25. S.K. Karna, R.V. Singh, and R. Sahai, Application of taguchi method in Indian industry. Int. J. Emerg. Technol. Adv. Eng. 2, 387–391 (2012).

    Google Scholar 

  26. M.H.M. Haniff, A.R. Ismail, B.M. Deros, M.N.A. Rahman, and K. Kardigama, The Taguchi approach in optimizing environmental factors affecting productivity in the automotive industry. Int. J. Automot. Mech. Eng. 3, 306–317 (2011).

    Article  Google Scholar 

  27. J.H. Nkuissi Tchognia, B. Hartiti, A. Ridah, J.M. Ndjaka, and P. Thevenin, Application of Taguchi approach to optimize the solegel process of the quaternary Cu2ZnSnS4 with good optical properties. Opt. Mater. 57, 85 (2016).

    Article  CAS  Google Scholar 

  28. F. Tian, Y. Zhang, J. Zhang, and C. Pan, Raman spectroscopy: a new approach to measure the percentage of anatase TiO2 exposed (001) FACETS. J. Phys. Chem. C 116, 7515 (2012).

    Article  CAS  Google Scholar 

  29. T. Dhandayuthapani, R. Sivakumar, R. Ilangovan, C. Gopalakrishnan, C. Sanjeeviraja, and A. Sivanantharaja, High coloration efficiency, high reversibility and fast switching response of nebulized spray deposited anatase TiO2 thin films for electrochromic applications. Electrochim. Acta 255, 358 (2017).

    Article  CAS  Google Scholar 

  30. N. Iftimie, D. Luca, F. Lacomi, M. Girtan, and D. Mardare, Gas sensing materials based on TiO2 thin films. J. Vac. Sci. Technol. B 27, 538 (2009).

    Article  CAS  Google Scholar 

  31. N. Jamalpoor, M. Ghasemi, and V. Soleimanian, Investigation of the role of deposition rate on optical, microstructure and ethanol sensing characteristics of nanostructured Sn doped In2O3 films. Mater. Res. Bull. 106, 49 (2018).

    Article  CAS  Google Scholar 

  32. Go. Sakai, N. Matsunaga, K. Shimanoe, and N. Yamazoe, Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor. Sens. Actuators B Chem. 80, 125 (2001).

    Article  CAS  Google Scholar 

  33. L. Zhu, and W. Zeng, Room-temperature gas sensing of ZnO-based gas sensor: a review Sens. Actuators A: Phys. 267, 242 (2017).

    Article  CAS  Google Scholar 

  34. Y. Yin, and A. Tiwari, Understanding the effect of thickness on the thermoelectric properties of Ca3Co4O9 thin films. A. Sci. Rep. 11, 6324 (2021).

    Article  CAS  Google Scholar 

  35. L. Guang-xing, W. Pornsiri, J. Piya, S. Rachsak, and S. Aparporn, Effect of grain size and film thickness on the thermoelectric properties of flexible Sb2Te3 thin films. Adv. Mater. Sci. Eng 2019, 7 (2019).

    Google Scholar 

  36. Q. Wang, H. He, J. Luan, Y. Tang, D. Huang, Z. Peng, and H. Wang, Synergistic effect of N-doping and rich oxygen vacancies induced by nitrogen plasma endows TiO2 superior sodium storage performance. Electrochim. Acta 309, 242 (2019).

    Article  CAS  Google Scholar 

  37. B.D. Paulsen, and C.D. Frisbie, Dependence of conductivity on charge density and electrochemical potential in polymer semiconductors gated with ionic liquids. J. Phys. Chem. C 116, 3132 (2012).

    Article  CAS  Google Scholar 

  38. A.A. Felix, E. Longo, J.A. Varela, and M.O. Orlandi, Gas sensing and conductivity relationship on nanoporous thin films: a CaCu3Ti4O12 case study. Thin Solid Films 604, 69–73 (2016).

    Article  CAS  Google Scholar 

  39. H. Razavi-Khosroshahi, K. Edalati, M. Hirayama, H. Emami, M. Arita, M. Yamauchi, H. Hagiwara, S. Ida, T. Ishihara, E. Akiba, Z. Horita, and M. Fuji, Visible-light-drivenphotocatalytic hydrogen generation on nanosized TiO2-II stabilized by high-pressure torsion. ACS Catal. 6, 5103 (2006).

    Article  CAS  Google Scholar 

  40. M. Dhivya Pushpa, M. Sanclemente Crespo, M. Manoj Cristopher, P. Karthick, M. Sridharan, C. Sanjeeviraja, and K. Jeyadheepann, Influence of pyrolytic temperature on optoelectronic properties and the energy harvesting applications of high pressure TiO2 thin films. Vacuum 161, 81 (2019).

    Article  CAS  Google Scholar 

  41. H. Attouche, S. Rahmane, S. Hettal, and N. Kouidri, Precursor nature and molarities effect on the optical, structural, morphological, and electrical properties of TiO2 thin films deposited by spray pyrolysis. Optik 203, 163985 (2020).

    Article  CAS  Google Scholar 

  42. A.S. Bakri, M.Z. Sahdan, F. Adriyanto, N.A. Raship, N.D. Said, S.A. Abdullah, and M.S. Rahim, Effect of annealing temperature of titanium dioxide thin films on structural and electrical properties. AIP Conf. Proc. 1788, 030030 (2017).

    Article  Google Scholar 

  43. A. Kotbi, B. Hartiti, S. Fadili, A. Ridah, and P. Thevenin, Some physical parameters of CuInGaS2 thin films deposited by spray pyrolysis for solar cells. Appl. Phys. A 123, 379 (2017).

    Article  CAS  Google Scholar 

  44. X. Tian, X. Cui, T. Lai, J. Ren, Z. Yang, M. Xiao, B. Wang, X. Xiao, and Y. Wang, Gas sensors based on TiO2 nanostructured materials for the detection of hazardous gases: a review. Nano Mater. Sci. 3, 390–403 (2021).

    Article  CAS  Google Scholar 

  45. F. Ghasemi, M. Ghasemi, L. Eftekhari, and V. Soleimanian, Comparaison and influence of metal dopants on the opto-electrical, microstructure and gas sensing properties of nanostructured indium oxide films. Opt. Laser Technol. 146, 107564 (2022).

    Article  CAS  Google Scholar 

  46. A. Veerabharaiah, S. Ramakrishma, G. Angadi, M. Venkatram, V.K. Ananthapadmanabha, N.M.H. Narayana Rao, and K. Munishamaiah, Development of polyvinyl acetate thin films by electrospinning for sensor applications. Appl. Nanosci. 7, 355 (2017).

    Article  CAS  Google Scholar 

  47. A.N. Ozakin, and F. Kaya, Experimental thermodynamic analysis of air-based PVT system using fins in different materials: optimization of control parameters by taguchi method and ANOVA. Sol. Energy 197, 199 (2020).

    Article  Google Scholar 

  48. M. Kuntoglu, and H. Saglam, ANOVA and fuzzy rule based evaluation and estimation of flank wear, temperature and acoustic emission in turning. CIRP J Manuf. Sci. Technol. 35, 589 (2021).

    Article  Google Scholar 

  49. B. Astinchap, R. Moradian, and K. Gholami, Effect of sputtering power on optical properties of prepared TiO2 thin films by thermal oxidation of sputtered Ti layers. Mater. Sci. Semicond. Process. 63, 169–175 (2017).

    Article  CAS  Google Scholar 

  50. A.N. Fouda, Influence of deposition temperature on the structural and dispersion parameters of TiO2 thin films. Appl. Phys. A 126, 48 (2020).

    Article  CAS  Google Scholar 

  51. Y. Doubi, B. Hartiti, H. Labrim, S. Fadili, A. Batan, M. Tahri, A. Belfhaili, and P. Thevenin, Effect of annealing time on structural and optical proprieties of TiO2 thin films elaborated by spray pyrolysis technique for future gas sensor application. Mater. Today: Proc. 30, 823 (2020).

    CAS  Google Scholar 

  52. D. Naveena, L. Thirumalaisamy, R. Dhanabal, K. Sethuraman, and A.C. Bose, Tuning the properties of the CuAl(1–X)FeXS2 thin film as a potential absorber for solar cell application. ACS Appl. Energy Mater. 3, 10550 (2020).

    Article  CAS  Google Scholar 

  53. C. Garlisi, and G. Palmisano, Radiation-free superhydrophilic and antifogging properties of e-beam evaporated TiO2 films on glass. Appl. Surf. Sci. 420, 83 (2017).

    Article  CAS  Google Scholar 

  54. L.L. Jian, H.Y. Lee, and C.T. Lee, Surface morphology-dependent sensitivity of thin-film-structured indium oxide-based NO2 gas sensors. J. Electron. Mater. 48, 2391 (2019).

    Article  CAS  Google Scholar 

  55. I. Dundar, A. Mere, V. Mikli, M. Krunks, and I.O. Acik, Thickness effect on photocatalytic activity of TiO2 thin films fabricated by ultrasonic spray pyrolysis. Catalysts 10, 1058 (2020).

    Article  CAS  Google Scholar 

  56. A. Moumen, B. Hartiti, E. Comini, Z. El Khalidi, H.M.M. Munasinghe Arachchige, S. Fadili, and P. Thevenin, Preparation and characterization of nanostructured CuO thin films using spray pyrolysis technique. Superlattices Microstruct. 127, 2 (2019).

    Article  CAS  Google Scholar 

  57. A. Kotbi, B. Hartiti, S. Fadili, A. Ridah, and P. Thevenin, Characteristics of CuInS2 thin films synthesizes by chemical spray pyrolysis. Opt. Quant. Electron. 48, 75 (2016).

    Article  CAS  Google Scholar 

  58. Z. Essalhi, B. Hartiti, A. Lfakir, B. Mari, and P. Thevenin, Optoelectronics properties of TiO2: Cu thin films obtained by sol gel method. Opt. Quant. Electron. 49, 301 (2017).

    Article  CAS  Google Scholar 

  59. A. Elfanaoui, A. Ihlal, A. Taleb, L. Boulkaddat, E. Elhamri, M. Meddah, K. Bouabid, and X. Portier, The synthesis of TiO2 thin film by chemical bath deposition (CBD) method. M. J. Condens. Matter. 13, 3 (2010).

    Google Scholar 

  60. I. Sta, M. Jlassi, M. Hajji, M.F. Boujmil, R. Jerbi, M. Kandyla, M. Kompitsas, and H. Ezzaouia, Structural and optical properties of TiO2 thin films prepared by spin coating. J Sol-Gel Sci Technol. 72, 421 (2014).

    Article  CAS  Google Scholar 

  61. S.A. Bhandarkar, A. Kompa, M.S. Murari, D. Kekuda, and R.K. Mohan, Investigation of structural and optical properties of spin coated TiO2: Mn thin films. Opt. Mater. 118, 111254 (2021).

    Article  CAS  Google Scholar 

  62. Y. Doubi, B. Hartiti, H. Labrim, S. Fadili, M. Tahri, A. Belafhaili, M. Siadat, and P. Thevenin, Experimental study of properties of TiO2 thin films deposited by spray pyrolysis for future sensory applications. Appl. Phys. A 127, 475 (2021).

    Article  CAS  Google Scholar 

  63. M.A. Han, H.J. Kim, H.C. Lee, J.S. Park, and H.N. Lee, Effects of porosity and particle size on the gas sensing properties of SnO2 films. Appl. Surf. Sci. 481, 133 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was performed with the support of the Franco-Moroccan PHC Toubkal/19/85. The authors thank Dr. S. Doubi and Georgia Tech–Lorraine, Metz, France, for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youssef Doubi.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doubi, Y., Hartiti, B., Siadat, M. et al. Optimization with Taguchi Approach to Prepare Pure TiO2 Thin Films for Future Gas Sensor Application. J. Electron. Mater. 51, 3671–3683 (2022). https://doi.org/10.1007/s11664-022-09615-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09615-6

Keywords

Navigation