Skip to main content
Log in

Enhancing the Blue Emission of a Borogermanate Glass System (B2O3, GeO2) via Doping with Copper and Europium Cations

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The photoluminescence properties of glasses have attracted much interest in the recent trends of technology. Glass can provide a suitable host environment for transition metal or rare earth ions as a powerful activator to achieve the desired luminescence. In this work, a new system of Eu3+- and Cu2+-doped borogermanate glass with composition of 80% B2O3:20% GeO2 was prepared. The formed glass systems were studied via optical, photoluminescence, XRD and FTIR spectral measurements. The XRD results confirmed the amorphicity and unstructured nature of the prepared samples. The optical absorption spectra revealed no characteristic spectrum in the visible region for the undoped glass, while the CuO-doped glasses demonstrated absorption in a broad band centered at about 770 nm, and the Eu2O3-doped samples showed two visible absorption peaks at 475 and 542 nm. The optical band gap result for GCu-Eu was lower than that for GCu and GEu. The photoluminescence spectrum showed stable blue emission for the undoped glass, which was enhanced with Cu2+ and Eu3+ addition. The color coordinates by CIE chromaticity diagram indicated the blue emission of all samples with a slight variation in positions. The FTIR measurements revealed the existence of a combination of the two borate groups (BO3) and (BO4) besides the Ge-O groups (GeO6, GeO4), with no distinct effect of dopants. The presence of CuO and Eu2O3 affected the density of the borogermanate glass according to the molecular weight and ionic radii of both ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Figure 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.A. Ouis and M.A. Marzouk, Comparative optical, FTIR and photoluminescence spectral analysis of copper ions in BaO-B2O3, SrO-B2O3 or Bi2O3-B2O3 glasses and impact of gamma irradiation. J. Lumin. 223, 117242 (2020).

    Article  CAS  Google Scholar 

  2. I. Uluisik, H.C. Karakaya and A. Koc, The importance of boron in biological systems. J. Trace Elem. Med. Biol. 45, 156 (2018).

    Article  CAS  Google Scholar 

  3. F.H. Margha and M.A. Marzouk, Influence of vanadium addition on the optical and photoluminescence properties of borate glasses and their glass–ceramic derivatives. Appl. Phys. A Mater. Sci. Proc. 125, 623 (2019).

    Article  CAS  Google Scholar 

  4. M.A. Marzouk, R.M. Ali, D.H. Hussein and H. Omar, Reddish orange phosphorescence of some types of zinc borosilicate glasses activated with Mn2+ and/or Sm3+. J. Mater. Sci. Mater. Electron. 30, 18234 (2019).

    Article  CAS  Google Scholar 

  5. S.M. Abo-Naf, S.A.M. Abdel-Hameed, A.M. Fayad, M.A. Marzouk and Y.M. Hamdy, Photoluminescence behavior of MO3-B2O3-CeO2-Bi2O3 (M = Mo or W) glasses and their counterparts nano-glass-ceramic. Ceram. Intern. 44, 21800 (2018).

    Article  CAS  Google Scholar 

  6. R. Rajaramakrishna, B. Knorr, V. Dierolf, R.V. Anavekar and H. Jain, Review: spectroscopic properties of Sm3+-doped lanthanum borogermanate glass. J. Lumin. 156, 192 (2014).

    Article  CAS  Google Scholar 

  7. O. Koroleva, M. Shtenberg, R. Zainullina, S. Lebedeva and L. Nevolina, Vibrational spectroscopy and density of K2O-B2O3-GeO2 glasses with variable B/Ge ratio. Phys. Chem. Chem. Phys. 21, 12676 (2019).

    Article  CAS  Google Scholar 

  8. Y. Yang, M. Zhang, Z. Yang and Z. Fu, Violet and visible up-conversion emission in Yb3+-Ho3+ co-doped germanium-borate glasses. J. Lumin. 130, 1711 (2010).

    Article  CAS  Google Scholar 

  9. T.N.H.T.K. Bahri, H. Wagiran, R. Hussin, M.A. Saeed, I. Hossain and H. Ali, Dosimetric properties of germanium doped calcium borate glass subjected to 6 MV and 10 MV X-ray irradiations. Nucl. Inst. Methods Phys. Res. B 336, 70 (2014).

    Article  CAS  Google Scholar 

  10. X.Y. Liu, H. Guo, S.X. Dai, M.Y. Peng and Q.Y. Zhang, Energy transfer and thermal stability in Bi3+/Eu3+ co-doped germanium-borate glasses for organic-resin-free UV LEDs. Opt. Mater. Express 6, 3574 (2016).

    Article  CAS  Google Scholar 

  11. E. Álvarez, M.E. Zayas, J.A. Rivera, F.F. Domínguez, R.P.D. Zamorano and U. Caldiño, New reddish-orange and greenish-yellow light emitting phosphors: Eu3+ and Tb3+/Eu3+ in sodium germanate glass. J. Lumin. 153, 198 (2014).

    Article  CAS  Google Scholar 

  12. I. Iparraguirre, J. Azkargorta, J.M. Fernandez-Navarro, M. Al-Saleh, J. Fernandez and R. Balda, Laser action and upconversion of Nd3+ in tellurite bulk glass. J. Non-Cryst. Solids 353, 990 (2007).

    Article  CAS  Google Scholar 

  13. S.A. Dalhatu, R. Hussin and K. Deraman, Structural and luminescence properties of Eu3+ doped magnesium sulfide borate glass and crystal. Chin. J. Phys. 54, 877 (2016).

    Article  CAS  Google Scholar 

  14. U. Caldiño, G. Muñoz, H.I. Camarillo, A. Speghini and M. Bettinelli, Down-shifting by energy transfer in Tb3+/Dy3+ codoped zinc phosphate glasses. J. Lumin. 161, 142 (2015).

    Article  CAS  Google Scholar 

  15. Z. Wu, B. Chen, X. Li, J. Zhang, J. Sun, H. Zhong, H. Zheng, L. Tong and H. Xia, Optical transition properties, energy transfer mechanism and luminescent thermal stability of Sm3+ doped silicate glasses. J. Alloys Compd. 663, 545 (2016).

    Article  CAS  Google Scholar 

  16. C. Zuo, A. Xiao, Z. Zhou, Y. Chen, X. Zhang, X. Ding, X. Wang and Q. Ge, Spectroscopic properties of Ce3+ doped BaO-Gd2O3-Al2O3-B2O3-SiO2 glasses. J. Non-Cryst. Solids 452, 35 (2016).

    Article  CAS  Google Scholar 

  17. X.Y. Sun, D.G. Jiang, S.W. Chen, G.T. Zheng, S.M. Huang, M. Gu, Z.J. Zhang and J.T. Zhao, Eu3+ activated borogermanate scintillating glass with a high Gd2O3 content. J. Am. Ceram. Soc. 96, 1483 (2013).

    Article  CAS  Google Scholar 

  18. G.E. Malashkevich, V.N. Sigaev, N.V. Golubev, V.I. Savinkov, P.D. Sarkisov, I.A. Khodasevich, V.I. Dashkevich and A.V. Mudryi, Luminescence of borogermanate glasses activated by Er3+ and Yb3+ ions. J. Non-Cryst. Solids 357, 67 (2011).

    Article  CAS  Google Scholar 

  19. Z. Na, K.N. Sharafudeen, D. Guoping, P. Mingying and Q. Jianrong, Mixed network effect of broadband near-infrared emission in bi-doped B2O3-GeO2 glasses. J. Am. Ceram. Soc. 95, 3842 (2012).

    Article  CAS  Google Scholar 

  20. X. Yuan Sun, D. Guo Jiang, Y. Zhuang Sun, Q. Lin Hu, Y. Huang and Y. Tao, Eu3+-activated B2O3-GeO2-RE2O3 (RE = Y3+, La3+ and Gd3+) borogermanate scintillating glasses. J. Non-Cryst. Solids 389, 72 (2014).

    Article  CAS  Google Scholar 

  21. J. Rajagukguk, J. Kaewkhao, M. Djamal, R. Hidayat and Y. Ruangtaweep, Structural and optical characteristics of Eu3+ ions in sodium-lead zinc-lithium-borate glass system. J. Mol. Struct. 1121, 180 (2016).

    Article  CAS  Google Scholar 

  22. M.J. Webber, Inorganic scintillators: today and tomorrow. J. Lumin. 100, 35 (2002).

    Article  Google Scholar 

  23. R. Xu, J. Pan, L. Hu and J. Zhang, 0.2 µm emission properties and energy transfer processes of Yb3+/Ho3+ codoped germanate glass. J. Appl. Phys. 108, 043522 (2010).

    Article  CAS  Google Scholar 

  24. H.K. Dan, D. Zhou, R. Wang, Q. Jiao, Z. Yang, Z. Song, X. Yu and J. Qiu, Effect of copper nanoparticles on the enhancement of upconversion in the Tb3+/Yb3+ co-doped transparent glass-ceramics. Opt. Mater. 39, 160 (2015).

    Article  CAS  Google Scholar 

  25. E. Metwalli, Copper redox behavior, structure and properties of copper lead borate glasses. J. Non-Cryst. Solids 317, 221 (2003).

    Article  CAS  Google Scholar 

  26. J.A. Duffy, Charge transfer spectra of metal ions in glass. Phys. Chem. Glasses 38, 289 (1997).

    CAS  Google Scholar 

  27. S.P. Singh, R.P.S. Chakradhar, J.L. Rao and B. Karmakar, Electron paramagnetic resonance, optical absorption and photoluminescence properties of Cu2+ ions in ZnO-Bi2O3-B2O3 glasses. J. Magn. Magn. Mater. 346, 21 (2013).

    Article  CAS  Google Scholar 

  28. T. Srikumar, I.V. Kityk, Ch.S. Rao, Y. Gandhi, M. Piasecki, P. Bragiel, V.R. Kumar and N. Veeraiah, Photostimulated optical effects and some related features of CuO mixed Li2O-Nb2O5-ZrO2-SiO2 glass ceramics. Ceram. Intern. 37, 2763 (2011).

    Article  CAS  Google Scholar 

  29. A.V. Egorysheva, V.D. Volodin, A.A. Chistyakov, Yu.A. Kuzishchin, V.M. Skorikov and T.D. Dudkina, Luminescence of Europium-doped BaO-Bi2O3-B2O3 glasses. Inorg. Mater. 46, 1384 (2010).

    Article  CAS  Google Scholar 

  30. A.S. Aleksandrovsky, A.S. Krylov, A.V. Malakhovskii, A.M. Potseluyko, A.I. Zaitsev and A.V. Zamkov, Europium doped strontium borate glasses and their optical properties. J. Phys. Chem. Solids 66, 75 (2005).

    Article  CAS  Google Scholar 

  31. A. Thulasiramudu and S. Buddhudu, Optical characterization of Eu3+ and Tb3+ ions doped zinc lead borate glasses. Spectrochim. Acta Part A 66, 323 (2007).

    Article  CAS  Google Scholar 

  32. N. Mott and E. Davis, Electronic Process in Non-Crystalline Materials, 2nd ed., (Oxford: University Press, 1979).

    Google Scholar 

  33. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953).

    Article  CAS  Google Scholar 

  34. V. Dimitrov and S. Sakka, Electronic oxide polarizability and optical basicity of simple oxides. I. J. Appl. Phys. 79, 1736 (1996).

    Article  CAS  Google Scholar 

  35. M.A. Marzouk and A.M. Fayad, Heavy metal oxide glass responses for white light emission. J. Mater. Sci. Mater. Electr. 31, 14502 (2020).

    Article  CAS  Google Scholar 

  36. P. Sharma and S.C. Katyal, Effect of Ge addition on the optical band gap and refractive index of thermally evaporated As2Se3 thin films. Res. Lett. Mater. Sci. 2008, 1 (2008). https://doi.org/10.1155/2008/826402.

    Article  CAS  Google Scholar 

  37. N. Shakti and P.S. Gupta, Structural and optical properties of sol-gel prepared ZnO thin film. Appl. Phys. Res. 2, 19 (2010).

    Article  CAS  Google Scholar 

  38. G. Lakshminarayana and S. Buddhudu, Spectral analysis of Mn2+, Co2+ and Ni2+: B2O3-ZnO-PbO glasses. Spectrochim. Acta Part A 63, 295 (2006).

    Article  CAS  Google Scholar 

  39. M. Marzouk, H. ElBatal and W. Eisa, Optical stability of 3d transition metal ions doped-cadmium borate glasses towards γ-rays interaction. Indian J. Phys. 90, 781 (2016).

    Article  CAS  Google Scholar 

  40. G. Lin, G. Dongd, D. Tanc, X. Liua, Q. Zhang, D. Chena, J. Qiud, Q. Zhaoa and Z. Xua, Long lasting phosphorescence in oxygen-deficient zinc–boron-germanosilicate glass–ceramics. J. Alloys Compd. 504, 177 (2010).

    Article  CAS  Google Scholar 

  41. Y. Fujimoto and M. Nakatsuka, Spectroscopic properties and quantum yield of Cu-doped SiO2 glass. J. Lumin. 75, 213 (1997).

    Article  CAS  Google Scholar 

  42. K. Fukumi, A. Chayahara, K. Ohora, N. Kitamura, Y. Horino, K. Fujii, M. Makihara, J. Hayakaya and N. Ohno, Photoluminescence of Cu+-doped silica glass prepared by MeV ion implantation. Nucl. Instrum. Methods Phys. Res. B 149, 77 (1999).

    Article  CAS  Google Scholar 

  43. N.S. Hussain, Y.P. Reddy and S. Buddhudu, Luminescence spectra of Eu3+-doped GeO2-PbO-Bi2O3 glasses. Mater. Res. Bull. 36, 1813 (2001).

    Article  CAS  Google Scholar 

  44. D. Malacara, Color Vision and Colorimetry; Theory and Applications, 2nd ed., (Bellingham: SPIE Press, 2011).

    Book  Google Scholar 

  45. R.J. Mortimer and T.S. Varley, Quantification of colour stimuli through the calculation of CIE chromaticity coordinates and luminance data for application to in situ colorimetry studies of electrochromic materials. Displays 32, 35 (2011).

    Article  CAS  Google Scholar 

  46. B. Curtis, D. Hynek, S. Kaizer, S. Feller and S.W. Martin, Composition dependence of the short range order structures in 0.2Na2O +0.8[xBO3/2 + (1–x)GeO2] mixed glass formers. J. Non-Cryst. Solids 500, 61 (2018).

    Article  CAS  Google Scholar 

  47. A.M. Fayad, M. Abdel-Baki, E.M. Hamzawy, G.M. Turky and G.T. El-Bassyouni, Influence of CuO on crystallization and electrical properties of B2O3-Bi2O3-GeO2-CaF2 glass system for thermoelectronic applications. J. Non-Cryst. Solids 544, 120185 (2020).

    Article  CAS  Google Scholar 

  48. O.N. Koroleva, M.V. Shtenberg, R.T. Zainullina, S.M. Lebedeva and L.A. Nevolina, Vibrational spectroscopy and density of K2O–B2O3–GeO2 glasses with variable B/Ge ratio. Phys. Chem. Chem. Phys. 21, 12676 (2019). https://doi.org/10.1039/c9cp01374a.

    Article  CAS  Google Scholar 

  49. K. Blaszczak and A. Adamczyk, Infrared studies of devitrification of glasses in the Li2O-B2O3-GeO2 system. J. Mol. Str. 596, 61 (2001).

    Article  CAS  Google Scholar 

  50. P. Tarte, Étude infra-rouge des orthosilicates et des orthogermanates. Spectrochim-Acta 18, 467 (1962).

    Article  CAS  Google Scholar 

  51. R. Condrate, in Introduction to Glass Science (Plenum Press, New York, 1972), p. 101.

  52. M.A. Marzouk and A.M. Fayad, Optical band gap and structural study on GeO2- and Y2O3-doped barium aluminoborate glasses. Appl. Phys. A 122, 931 (2016).

    Article  CAS  Google Scholar 

  53. R.M.M. Morsi, S. Ibrahim and M.M. Morsi, Preparation and characterization of materials in the system xCuO-(50–x) CdO-50B2O3. Ceram. Int. 43, 8306 (2017).

    Article  CAS  Google Scholar 

  54. E. Soheyli and M.H. Hekmat Shoar, Investigation of thermal and electrical conductivity of phosphate glasses containing two transition metal oxides, lithium oxide and calcium oxide. Phys. Scr. 89, 075801 (2014).

    Article  CAS  Google Scholar 

  55. M. Baazm, E. Soheyli, M.H. Hekmatshoar, A. Rostamzad and A.K.C. Abad, Preparation of quaternary boro-phosphate multifunctional glasses and their structural, optical, switching and antibacterial properties. Ceram. Int. 44, 9414 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the National Research Centre for the possibility to use their equipment and facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Fayad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fayad, A.M., Ouis, M.A. & Marzouk, M.A. Enhancing the Blue Emission of a Borogermanate Glass System (B2O3, GeO2) via Doping with Copper and Europium Cations. J. Electron. Mater. 51, 3684–3692 (2022). https://doi.org/10.1007/s11664-022-09590-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09590-y

Keywords

Navigation