Skip to main content
Log in

Shock Wave Impact, Optical, Chemical Etching and Thermal Analyses of a Few Technologically Vibrant Crystals

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this article, we focus on shock wave impact, optical, chemical etching and thermal analyses of a few technologically sound crystals which have been reported for various constructive applications. Large-size organic, inorganic and semi-organic nonlinear optical single crystals were grown by the Sankaranarayanan–Ramasamy (SR) method to be utilized for different characterizations. UV–Visible spectroscopy was performed to identify the optical transmittance of the grown crystals to ensure their suitability for optical applications. The mechanical study was performed to determine the mechanical stability and the crystals are suggested for laser applications. Chemical etching was carried out to analyse the quality of the surface of the crystals that are recommended for nonlinear optical (NLO) application. Differential scanning calorimetry (DSC) was utilized to examine the thermal behaviour of the grown crystals such that they are proposed for a variety of applications such as ultraviolet transmitting filters, lasers, optical windows and microelectronics devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Chen, Z. Sun, and C. Song, Yan Ge. Cryst. Growth Des. 12, 2673 (2012).

    Article  CAS  Google Scholar 

  2. C. Alosious Gonsago, H. Merina Albert, R. Umamaheswari, A. Joseph Arul Pragasam, J. Therm Anal. Calorim, 110, 839 (2012).

  3. S. Janarthanan, R. Sugaraj Samuel, Y.C. Rajan, P.R. Umarani, S. Pandi (2011) J Therm Anal Calorim., 109: 69

  4. S. Brahadeeswaran, S. Onduka, M. Takagi, Y. Takahashi, H. Adachi, T. Kamimura, M. Yoshimura, Y. Mori, K. Yoshida, and T. Sasaki, Cryst. Growth Des. 6, 2463 (2006).

    Article  CAS  Google Scholar 

  5. D.S. Chemla, J. Zyss, Academic press, New York, (1987).

  6. P.N. Prasad, D.J. Williams, Wiley, New York, (1991).

  7. J.L. Oudar and D.S. Chemla, J. Chem. Phys. 66, 2664 (1977).

    Article  CAS  Google Scholar 

  8. J.L. Oudar, J. Chem. Phys. 67, 446 (1977).

    Article  CAS  Google Scholar 

  9. J.L. Stevenson, J. Phys. D: Appl. Phys. 6, 13 (1973).

    Article  Google Scholar 

  10. C.J. Goldsmith and J.G. White, J. Chem. Phys. 31, 1175 (1959).

    Article  CAS  Google Scholar 

  11. J.I. Zink and W. Klint, J. Am. Chem. Soc. 96, 4690 (1974).

    Article  CAS  Google Scholar 

  12. B.P. Chandra and M. Elyas, J. Phys. C 12, 695 (1979).

    Article  Google Scholar 

  13. J. Williams ed., American Chemical Society Symposium Series 233. (Washington, DC: American Chemical Society, 1983).

    Google Scholar 

  14. D.S. Chemla, J. Zyss (Eds.), Vols. 1 and 2, Academic Press, New York, (1987).

  15. P. Gunter, Ch. Bosshard, K. Sutter, and H. Arend, Appl. Phys. Lett. 50, 486 (1987).

    Article  Google Scholar 

  16. K. Kagawa, M. Sagawa, A. Kakuta, M. Kaji, and M. Saeki, Y. Namba. J. Cryst. Growth 139, 309 (1994).

    Article  CAS  Google Scholar 

  17. D. Yuan, Z. Zhong, M. Liu, D. Xu, Q. Fang, Y. Bing, S. Sun, and M. Jiang, J. Cryst. Growth 186, 240 (1998).

    Article  CAS  Google Scholar 

  18. J. Badan, R. Hierle, A. Perigand, J. Zyss, In: and Williams, D.J. (Ed.)., 233 D. 5, American Chemical Society, Washington, DC, (1993).

  19. N. Vijayan, G. Bhagavannarayana, R. Ramesh Babu, R. Gopalakrishnan, J. Cryst. Growth, 256, 174 (2003).

  20. N. Vijayan, R. Ramesh Babu, M. Gunasekaran, R. Gopalakrishnan, P. Ramasamy, C.W. Lan, J. Cryst. Growth, 249, 309 (2003).

  21. H. Wenbo, Y. Duorong, X. Dong, Z. Nan, Y. Wentao, L. Mingguo, S. Suoying, and J. Minhua, J. Cryst. Growth 133, 71 (1993).

    Article  Google Scholar 

  22. S.A. DeVries, P. Goedtkindt, W.J. Huisman, M.J. Zwanenburg, R. Feidenhans’l, S.L. Bennett, D.M. Smilgies, A. Stierle, J.J. De Yoreo, W.J.P. Van Enckevort, P. Bennema, E. Vlieg, J. Cryst. Growth, 205, 202 (1999).

  23. R. N. McElhaney, Chem. Phys. Lipids, 30, 229 (1982).

  24. E. Freire, Differential scanning calorimetry. Methods Mol. Biol. 40, 191–218 (1995).

    CAS  Google Scholar 

  25. I. Jelesarov and H.R. Bosshard, J. Mol. Recognit. 12, 3–18 (1999).

    Article  CAS  Google Scholar 

  26. P. Ramesh Kumar, R. Gunaseelan, S. Kumararaman, G. Baghavannarayana, P. Sagayaraj, Mat. Chem. Phy. 125, 15 (2011).

  27. M. Rajalakshmi, T.S. Shyiu, K. Indirajith, and R. Gopalakrishnan, Spectro. Chem. Acta A 86, 27–32 (2012).

    Article  CAS  Google Scholar 

  28. K. Sethuraman, R. Ramesh Babu, R. Gopalakrishnan, P. Ramasamy, J. Cryst. Growth, 204, 349 (2006).

  29. V.L. Manomenova, M.N. Stepnova, V.V. Grebenev, E.B. Rudneva, and A.E. Voloshin, Crystallogr. Rep. 58, 513–516 (2013).

    Article  CAS  Google Scholar 

  30. M. Senthilpandiyan and P. Ramasamy, Mater. chem. phys. 132, 1019–1028 (2012).

    Article  Google Scholar 

  31. S.A. Martin Britto Dhasa and S. Natarajan, Cryst. Res. Technol. 42, 471 (2007).

  32. T. Jayapalan, S.J.D. Sathiyadhas, J. Michael, B. Settu, and S.M.B.D. Amalapushpam, Cryst. Res. Technol. 53, 1700267 (2018).

    Article  Google Scholar 

  33. A. Saranraj, J. Thirupathy, S. Sahaya Jude Dhas, M. Jose, G. Vinitha, S. A. Martin Britto Dhas, Appl. Phy. B, 124, 97 (2018).

  34. J. Thirupathy, S.S.J Dhas, M. Jose, S.A.M.B Dhas, Mater. Res. Exp, 6, 086206 (2019).

  35. J. Thirupathy, S. Sahaya Jude Dhas, M. Jose, S.A. Martin Britto Dhas, J Mater Sci: Mater. Electron. 30, 2224 (2019).

  36. M. Manimegalai and J. Annaraj, Int. J. Adv. Eng. Res. Develop., 5, 1711 (2018).

  37. G. Jagadeesh, Resonance – J. Sci. Education, 13 (8), 752 (2008).

  38. G. Jagadeesh and K. Takayama, J. Indian Inst. Sci. 82, 49–57 (2002).

    CAS  Google Scholar 

  39. K.D. Parikh, D.J. Dave, M.J. Joshi, and B.B. Parekh, Int. J. of Chem. Concepts 2, 50–56 (2016).

    CAS  Google Scholar 

  40. J. Tauc, Amorphous and Liquid Semiconductors (New York: Plenum Press, 1974).

    Book  Google Scholar 

  41. T. Hatakeyama and L. Zhenhai, Handbook of thermal analysis (Chichester: Wiley, 1998).

    Google Scholar 

  42. P. Gabbot, Principles and applications of thermal analysis,UK: Blackwell; 1 – 50 (2008).

  43. A.J. Glass and A.H. Guenther, Appl. Opt. 12, 637–649 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Thirupathy.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thirupathy, J., Dhas, S.S.J. & Dhas, S.A.M.B. Shock Wave Impact, Optical, Chemical Etching and Thermal Analyses of a Few Technologically Vibrant Crystals. J. Electron. Mater. 51, 3132–3140 (2022). https://doi.org/10.1007/s11664-022-09569-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09569-9

Keywords

Navigation