Skip to main content

Advertisement

Log in

Biomass-Derived Activated Carbon/Epoxy Composite as Microwave Absorbing Material

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

An activated carbon/epoxy composite was synthesized in which waste mango leaves biomass was used as the carbon source. To create a sufficient amount of porosity in the biomass, a simple process of carbonization followed by its activation was used. The morphology and porosity of the activated carbon material were studied by SEM, TEM, and BET analysis, which confirmed the presence of macro- and mesopores in the material. The activated carbon/epoxy composite with 3 mm thickness gave the highest reflection loss (RL) of − 39.57 dB at 6.48 GHz. At a thickness of just 2 mm the maximum effective absorption bandwidth (RL < − 10 dB) of 2.14 GHz was achieved. This excellent microwave absorption performance was attributed to the porous and bowl-type structure, which resulted in large surface area, high impedance matching, and subsequent attenuation of microwaves by conduction losses, as well as interfacial and dipolar polarization processes. This study provides a porous activated carbon/epoxy composite that is lightweight and economical, and has a high structural stability for microwave absorption applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Liu, S. Yang, H. Hu, T. Zhang, Y. Yuan, Y. Li, X. He, and A.C.S. Sustain, Chem. Eng. 7, 1228 (2019).

    CAS  Google Scholar 

  2. N. Li, G.W. Huang, Y.Q. Li, H.M. Xiao, Q.P. Feng, N. Hu, S.Y. Fu, and A.C.S. Appl, Mater. Interfaces 9, 2973 (2017).

    Article  CAS  Google Scholar 

  3. X. Qiu, L. Wang, H. Zhu, Y. Guan, and Q. Zhang, Nanoscale 9, 7408 (2017).

    Article  CAS  Google Scholar 

  4. F. Wen, F. Zhang, and Z. Liu, J. Phys. Chem. C 115, 14025 (2011).

    Article  CAS  Google Scholar 

  5. B.P. Singh, V. Choudhary, P. Saini, S. Pande, V.N. Singh, and R.B. Mathur, J. Nanoparticle Res. 15, 1554 (2013).

    Article  CAS  Google Scholar 

  6. L. Deng, and M. Han, Appl. Phys. Lett. 91, 023119 (2007).

    Article  CAS  Google Scholar 

  7. P. Liu, Z. Yao, J. Zhou, Z. Yang, and L.B. Kong, J. Mater. Chem. C 4, 9738 (2016).

    Article  CAS  Google Scholar 

  8. M. Fu, Q. Jiao, Y. Zhao, and H. Li, J. Mater. Chem. A 2, 735 (2014).

    Article  CAS  Google Scholar 

  9. J. Feng, Y. Hou, Y. Wang, L. Li, and A.C.S. Appl, Mater. Interfaces 9, 14103 (2017).

    Article  CAS  Google Scholar 

  10. R. Shu, W. Li, X. Zhou, D. Tian, G. Zhang, Y. Gan, J. Shi, and J. He, J. Alloys Compd. 743, 163 (2018).

    Article  CAS  Google Scholar 

  11. C. Wang, X. Han, P. Xu, X. Zhang, Y. Du, S. Hu, J. Wang, and X. Wang, Appl. Phys. Lett. 98, 072906 (2011).

    Article  CAS  Google Scholar 

  12. W. Ma, H. Chen, S. Hou, Z. Huang, Y. Huang, S. Xu, F. Fan, Y. Chen, and A.C.S. Appl, Mater. Interfaces 11, 25369 (2019).

    Article  CAS  Google Scholar 

  13. P. Liu, Y. Zhang, J. Yan, Y. Huang, L. Xia, and Z. Guang, Chem. Eng. J. 368, 285 (2019).

    Article  CAS  Google Scholar 

  14. Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, Z. Huang, and Y. Chen, Adv. Mater. 27, 2049 (2015).

    Article  CAS  Google Scholar 

  15. Z. Wu, K. Tian, T. Huang, W. Hu, F. Xie, J. Wang, M. Su, L. Li, and A.C.S. Appl, Mater. Interfaces 10, 11108 (2018).

    Article  CAS  Google Scholar 

  16. H. Guan, Q. Wang, X. Wu, J. Pang, Z. Jiang, G. Chen, C. Dong, L. Wang, and C. Gong, Compos. Part B. 207, 108562 (2021).

    Article  CAS  Google Scholar 

  17. P. Negi, A.K. Chhantyal, A.K. Dixit, S. Kumar, and A. Kumar, Sustain. Mater. Technol. 27, e00244 (2021).

    CAS  Google Scholar 

  18. J. Fang, Y. Shang, Z. Chen, W. Wei, Y. Hu, X. Yue, and Z. Jiang, J. Mater. Chem. C 5, 4695 (2017).

    Article  CAS  Google Scholar 

  19. L. Wang, P. Zhou, Y. Guo, J. Zhang, X. Qiu, Y. Guan, M. Yu, H. Zhu, and Q. Zhang, RSC Adv. 9, 9718 (2019).

    Article  CAS  Google Scholar 

  20. Q. Liu, D. Zhang, and T. Fan, Appl. Phys. Lett. 93, 013110 (2008).

    Article  CAS  Google Scholar 

  21. Y. Wei, H. Liu, S. Liu, M. Zhang, Y. Shi, J. Zhang, L. Zhang, and C. Gong, Compos. Commun. 9, 70 (2018).

    Article  Google Scholar 

  22. J. Fang, T. Liu, Z. Chen, Y. Wang, W. Wei, X. Yue, and Z. Jiang, Nanoscale 8, 8899 (2016).

    Article  CAS  Google Scholar 

  23. H. Zhao, Y. Cheng, H. Lv, G. Ji, and Y. Du, Carbon N.Y. 142, 245 (2019).

    Article  CAS  Google Scholar 

  24. P. Negi, and A. Kumar, Nanoscale Adv. 3, 4196 (2021).

    Article  CAS  Google Scholar 

  25. B.P. Singh, K. Saini, V. Choudhary, S. Teotia, S. Pande, P. Saini, and R.B. Mathur, J. Nanoparticle Res. 16, 2161 (2014).

    Article  CAS  Google Scholar 

  26. R. Kumar, S.R. Dhakate, P. Saini, and R.B. Mathur, RSC Adv. 3, 4145 (2013).

    Article  CAS  Google Scholar 

  27. V.C. Tung, M.J. Allen, Y. Yang, and R.B. Kaner, Nat. Nanotechnol. 4, 25 (2009).

    Article  CAS  Google Scholar 

  28. H. Zhao, Y. Cheng, J. Ma, Y. Zhang, G. Ji, and Y. Du, Chem. Eng. J. 339, 432–441 (2018).

    Article  CAS  Google Scholar 

  29. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, and T. Siemieniewska, Pure Appl. Chem. 57, 603 (1985).

    Article  CAS  Google Scholar 

  30. M. Zhang, C. Han, W.Q. Cao, M.S. Cao, H.J. Yang, and J. Yuan, Nano-Micro Lett. 13, 27 (2021).

    Article  CAS  Google Scholar 

  31. C. Zhou, S. Geng, X. Xu, T. Wang, L. Zhang, X. Tian, F. Yang, H. Yang, and Y. Li, Carbon N.Y. 108, 234 (2016).

    Article  CAS  Google Scholar 

  32. B. Zhang, J. Wang, X. Su, H. Duan, H. Cai, J. Wang, S. Yang, and S. Huo, J. Mater. Sci. Mater. Electron. 28, 12122 (2017).

    Article  CAS  Google Scholar 

  33. F. Qin, and C. Brosseau, J. Appl. Phys. 111, 061301 (2012).

    Article  CAS  Google Scholar 

  34. B. Quan, W. Gu, J. Sheng, X. Lv, Y. Mao, L. Liu, X. Huang, Z. Tian, and G. Ji, Nano Res. 14, 1495 (2021).

    Article  CAS  Google Scholar 

  35. W. Gu, X. Cui, J. Zheng, J. Yu, Y. Zhao, and G. Ji, J. Mater. Sci. Technol. 67, 265 (2021).

    Article  Google Scholar 

  36. Y. Arooj, Y. Zhao, X. Han, T. Bao, and Y. Wang, Polym. Adv. Technol. 26, 620 (2015).

    Article  CAS  Google Scholar 

  37. F. Ren, G. Zhu, Y. Wang, and X. Cui, J. Polym. Res. 21, 1–7 (2014).

  38. S. E. Lee, O. Choi, and H. T. Hahn, J. Appl. Phys. 104 (2008).

  39. F. Nanni, P. Travaglia, and M. Valentini, Compos. Sci. Technol. 69, 485 (2009).

    Article  CAS  Google Scholar 

  40. Y. Wang, F. Luo, W. Zhou, and D. Zhu, Ceram. Int. 40, 10749 (2014).

    Article  CAS  Google Scholar 

  41. H. Hosseini, and H. Mahdavi, Appl. Organomet. Chem. 32, 1 (2018).

    Google Scholar 

  42. S. Das, G. Chandra Nayak, S.K. Sahu, and R. Oraon, J. Magn. Magn. Mater. 384, 224 (2015).

    Article  CAS  Google Scholar 

  43. C.C. Chen, W.F. Liang, Y.H. Nien, H.K. Liu, and R. Bin Yang, Mater. Res. Bull. 96, 81 (2017).

    Article  CAS  Google Scholar 

  44. R.B. Yang, and W.F. Liang, J. Appl. Phys. 113, 15 (2013).

    Google Scholar 

  45. X. Su, J. Wang, X. Zhang, S. Huo, W. Chen, W. Dai, and B. Zhang, Ceram. Int. 46, 12353 (2020).

    Article  CAS  Google Scholar 

  46. M.S. Cao, X.X. Wang, M. Zhang, J.C. Shu, W.Q. Cao, H.J. Yang, X.Y. Fang, and J. Yuan, Adv. Funct. Mater. 29, 1807398 (2019).

    Article  CAS  Google Scholar 

  47. Z. Jiang, H. Si, X. Chen, H. Liu, L. Zhang, Y. Zhang, C. Gong, and J. Zhang, Compos. Commun. 22, 100503 (2020).

    Article  Google Scholar 

  48. X. Wang, W. Cao, M. Cao, and J. Yuan, Adv. Mater. 32, 2002112 (2020).

    Article  CAS  Google Scholar 

  49. M. Zhang, Z. Jiang, X. Lv, X. Zhang, Y. Zhang, J. Zhang, L. Zhang, and C. Gong, J. Phys. D. Appl. Phys. 53, 1–10 (2020).

Download references

Acknowledgments

Author Praveen Negi is thankful to the Director, National Institute of Technology Kurukshetra for providing Institute fellowship. The authors are also thankful to the Director, DMSRDE, DRDO Kanpur for VNA characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashavani Kumar.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negi, P., Kumar, A. Biomass-Derived Activated Carbon/Epoxy Composite as Microwave Absorbing Material. J. Electron. Mater. 51, 2918–2925 (2022). https://doi.org/10.1007/s11664-022-09558-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09558-y

Keywords

Navigation