Skip to main content
Log in

Metasurface Lens-Integrated Rectangular Dielectric Resonator Antenna with Enhanced Gain

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This article proposes the design and realization of a metasurface lens-loaded rectangular-shaped dielectric resonator antenna (DRA) operating at 4.5 GHz with enhanced gain. The MS lens, loaded above the rectangular-shaped DRA at a height of Hλ0/2 from the DR block, contributes to a significantly higher gain (9.9 dBi) compared to the standalone DRA block (5.8 dBi) maintaining the overall size of the antenna as 0.90λ0 × 1.05λ0 × 0.53λ0. The proposed DRA integrated with an MS lens is systematically designed in a commercial EM solver using theoretical guidelines followed by experimental characterization of the fabricated samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Kumari, P. Tripathi, S. Sahu, S.P. Singh, and D. Kumar, Four-element composite triangular dielectric resonator antenna using Li2O-1.94MgO-0.02Al2O3-P2O5 ceramic for wideband applications. J. Electron. Mater. 47, 9 (2018).

    Article  Google Scholar 

  2. X. Chen, H. Feng Ma, X. Ying Zou, W. Xiang Jiang, and T. Jun Cui, Three-dimensional broadband and high-directivity lens antenna made of metamaterials. J. Appl. Phys. 110, 044904 (2011).

    Article  Google Scholar 

  3. W. Chang and Z. Feng, Investigation of a novel wideband feeding technique for dielectric ring resonator antennas. IEEE Antennas Wirel. Propag. Lett. 8, 348 (2009).

    Article  Google Scholar 

  4. M. Abedian, S.K.A. Rahim, and M. Khalily, Two-segments compact dielectric resonator antenna for UWB application. IEEE Antennas Wirel. Propag. Lett. 11, 1533 (2012).

    Article  Google Scholar 

  5. H.L. Zhu, S.W. Cheung, X.H. Liu, Y.F. Cao and T.I. Yuk, Frequency reconfigurable slot antenna using metasurface, in 8th European Conference on Antennas and Propagation (EuCAP 2014).

  6. Y.-H. Qian and Q.-X. Chu, A broadband hybrid monopole-dielectric resonator water antenna. IEEE Antennas Wirel. Propag. Lett. 16, 360 (2017).

    Article  Google Scholar 

  7. S. Fakhte, H. Oraizi, and L. Matekovits, Gain improvement of rectangular dielectric resonator antenna by engraving grooves on its side walls. IEEE Antennas Wirel. Propag. Lett. 16, 2167 (2017).

    Article  Google Scholar 

  8. S. George, S. Raman, P. Mohanan, M.T. Sebastian, Polymer ceramic composites for microwave substrate and antenna applications, in Indian Antenna Week: A Workshop on Advanced Antenna Technology (2010)

  9. M.N. Suma, S.K. Menon, P.V. Bijumon, M.T. Sebastian, and P. Mohanan, Experimental investigation on rectangular dielectric resonator antenna excited by conductor backed coplanar waveguide. IEEE Antennas Propag. Soc. Int. Sympos. 4, 238 (2005).

    Article  Google Scholar 

  10. S. Mridula, B. Paul, S.K. Menon, C.K. Aanandan, K. Vasudevan, P. Mohanan, P.V. Bijumon, M.T. Sebastian, Wideband Rectangular Dielectric Resonator Antenna for W-LAN applications, in IEEE Antennas and Propagation Society Symposium (2004)

  11. T.A. Denidni, Y. Coulibaly, and H. Boutayeb, Hybrid dielectric resonator antenna with circular mushroom-like structure for gain improvement. IEEE Trans. Antennas Propag. 57, 1043 (2009).

    Article  Google Scholar 

  12. Z.-X. Xia and K.W. Leung, Gain enhancement of rectangular dielectric resonator antenna using EBG surface, in IEEE Asia-Pacific Conference on Antennas and Propagation (2018)

  13. B. Bahreini, H. Oraizi, N. Noori, and S. Fakhte, Design of a circularly polarized parasitic array with slot-coupled DRA with improved gain for the 5G mobile system. IEEE Antennas Wirel. Propag. Lett. 17, 1802 (2018).

    Article  Google Scholar 

  14. S. Fakhte, H. Oraizi, and L. Matekovits, High gain rectangular dielectric resonator antenna using uniaxial material at fundamental mode. IEEE Trans. Antennas Propag. 65, 342 (2017).

    Article  Google Scholar 

  15. D. Swathi1, D. HabibullaKhan, V. Pallavi, S.V.S. Shalini, Pratyusha, Design and implementation of dual feed circularly polarized dielectric resonator antenna for high gain applications, in Fifth international conference on inventive computation technologies (2020)

  16. B. Rana, A. Chatterjee, S.K. Parui, Gain enhancement of a direct microstrip line fed dielectric resonator antenna using FSS, in IEEE Applied Electromagnetic Conference (2015)

  17. H. Zhu, S.W. Cheung, and T.I. Yuk, Enhancing antenna boresight gain using a small metasurface lens. IEEE Antennas Wirel. Propag. Mag. 10, 35 (2016).

    Article  Google Scholar 

  18. S. Keyrouz, D. Caratelli, Dielectric resonator antennas: basic concepts, design guidelines, and recent developments at millimeter-wave frequencies. Int. J. Antennas Propag. 2016, Article ID: 6075680

  19. A. Petosa, Dielectric Resonator Antenna Handbook (Artech House, 2007)

  20. Z. Szabó, G.-H. Park, R. Hedge, and E.-P. Li, A unique extraction of metamaterial parameters based on Kramers–Kronig relationship. IEEE Trans. Microw. Theory Techn. 58, 2646 (2010).

    Article  Google Scholar 

  21. CST Studio Suite 2019, Dassault Systemes, Providence, Rhode Island

  22. R.D. Gupta, and M.S. Parihar, Differentially fed wideband rectangular DRA with high gain using short horn. IEEE Antennas Wirel. Propag. Lett. 16, 1804 (2017).

    Google Scholar 

  23. C.-H. Li and T.-Y. Chiu, 340-GHz low-cost and high-gain on-chip higher order mode dielectric resonator antenna for THz applications. IEEE Trans. Terahertz Sci. Technol. 7, 284 (2017).

    Article  CAS  Google Scholar 

  24. S. Trinh-Van, Y. Yang, K.-Y. Lee, and K.C. Hwang, Single-fed circularly polarized dielectric resonator antenna with an enhanced axial ratio bandwidth and enhanced gain. IEEE Access 8, 41045 (2020).

    Article  Google Scholar 

  25. B. Sahu, M. Aggarwal, P. Tripathi, R. Singh, Stacked cylindrical dielectric resonator antenna with metamaterial as a superstrate for enhancing the bandwidth and gain, in IEEE International Conference on Signal Processing, Computing and Control, (2013), p. 1

Download references

Acknowledgments

The authors would like to thank Dr. K.P. Surendran, Materials Science and Technology Department of the National Institute for Interdisciplinary Science and Technology, Trivandrum, and Shri. Rajeev Jyoti Space Application Center, ISRO, Ahmedabad, for extending their technical support and measurement facility in this work. The authors are also thankful to Kerala State Council for Science, Technology and the Environment for funding the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth George.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare. All authors have seen and agree with the contents of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Calculation of the Resonant Frequency of the Dielectric Resonator

(DRA parameters: w = 17 mm, d = 17 mm, h = 4.2 mm)

$$ b{ = 2}h{ = 8}{\text{.4 mm}} $$
(9)
$$ k_{x} = \frac{\pi }{w} \, = \, 184.705 $$
(10)
$$ k_{z} = \frac{\pi }{2b}{ = 373}{\text{.80}} $$
(11)
$$ k_{yo \, } = \, \sqrt {k_{x}^{2} + k_{z}^{2} } { = 416}{\text{.9 }} $$
(12)
$$ d = \frac{2}{{k_{y} }}\tanh \left( {\frac{{k_{y0} }}{{k_{y} }}} \right) \, \Rightarrow \, k_{y} { = }118 $$
(13)
$$ f_{0} = \frac{c}{{2\pi \sqrt {\varepsilon_{r} } }}\sqrt {k_{x}^{2} + k_{y}^{2} + k_{z}^{2} } { = 4}{\text{.8 GHz}} $$
(14)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

George, E., Saha, C. Metasurface Lens-Integrated Rectangular Dielectric Resonator Antenna with Enhanced Gain. J. Electron. Mater. 51, 3059–3067 (2022). https://doi.org/10.1007/s11664-022-09544-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09544-4

Keywords

Navigation