Skip to main content
Log in

Graphene-Based Plasmonic Detection of Magnetic Field and Gaseous Medium with Photonic Spin Hall Effect in a Broad Terahertz Region

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, we propose and analyze a graphene-based plasmonic sensor with four layers (germanium, dielectric, graphene, and gaseous medium) for detection of refractive index (RI) of a gas medium and magnetic field applied to the graphene layer. The main idea is to exploit the strong plasmonic properties of the graphene monolayer in the THz frequency region and their strong dependence on applied magnetic field (B) for achieving high-performance sensor design. The transverse spin-dependent shift (SDS) of the horizontal photonic spin Hall effect (PSHE) at a given frequency (5 THz) is considered. The sensor structure is analyzed for two applications. First, in the conventional weak measurements, for a magnetic field B = 0 T and for an amplified angle ∆ = 0.1°, an extremely fine refractive index resolution of 1.22×10−11 RIU is obtained for gas medium in the range 1-1.1 RIU. The above resolution can be further improved under modified weak measurements, where for an amplified angle ∆ = 5.730° (i.e., 0.1 rad), a refractive index resolution of 6.24×10−17 RIU can be achieved. Second, for magnetic field detection, in the conventional weak measurements and for ∆ = 0.1°, a magnetic field resolution of 0.0146 μT is achievable. Also, in modified weak measurements, for ∆ = 5.730°, the magnetic field resolution of as fine as 3.59×10−6 μT can be achieved with the proposed sensor scheme. Our results are significantly finer than the current stae-of-the-art sensors (5×10−9 RIU and 0.7 μT). Further, the sensing performance for gas detection has the inverse dependence while that of magnetic field sensor has direct dependence on applied magnetic field. The resolution achieved by the proposed sensor design gets finer for smaller THz frequency, where the real and imaginary parts of the graphene RI are large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X. Zhao, Y. Bai, Q. Deng, C. Ai, X. Yang, and D. Wen, Research of the monolithic integrated 3-D magnetic field sensor based on MEMS technology. IEEE Sens. J. 5849 (2017)

  2. G. Vértesy, A. Gasparics, and J. Szöllősy, High sensitivity magnetic field sensor. Sens. Actuator A-Phys. 85, 202 (2000).

    Article  Google Scholar 

  3. D. Ettelt, P. Rey, G. Jourdan, A. Walther, P. Robert, and J. Delamare, 3D Magnetic field sensor concept for use in inertial measurement units (IMUs). J. Microelectromech. Syst. 23, 324 (2014).

    Article  CAS  Google Scholar 

  4. R. Körber, J.H. Storm, H. Seton, J.P. Mäkelä, R. Paetau, L. Parkkonen, C. Pfeiffer, B. Riaz, J.F. Schneiderman, H. Dong, and S.M. Hwang, SQUIDs in biomagnetism: a roadmap towards improved healthcare. Supercond. Sci. Technol. 29, 113001 (2016).

    Article  Google Scholar 

  5. M. Dmitry, D.J. Mapps, K. Levada, V. Belyaev, A. Omelyanchik, L. Panina, and V. Rodionova, Ultrasensitive magnetic field sensors for biomedical applications. Sensors 20, 1569 (2020).

    Article  Google Scholar 

  6. C. Rizal, and V.I. Belotelov, Sensitivity comparison of surface plasmon resonance (SPR) and magneto-optic SPR biosensors. Eur. Phys. J. Plus 134, 435 (2019).

    Article  CAS  Google Scholar 

  7. C. Rizal, Magento-optic-plasmonic sensors with improved performance. IEEE Trans. Magn. 57, 1 (2021).

    Article  Google Scholar 

  8. B. Kaur, A.K. Sharma, and Y.K. Prajapati, Plasmonic sensor for magnetic field detection with chalcogenide glass and ferrofluid materials under thermal variation in near infrared. Opt. Mater. 117, 111175 (2021).

    Article  CAS  Google Scholar 

  9. Y. Zhao, D. Wu, R.-Q. Lv, and J. Li, Magnetic field measurement based on the Sagnac interferometer with a ferrofluid-filled high birefringence photonic crystal fiber. IEEE Trans Instrum. Meas. 65, 1503 (2016).

    Article  CAS  Google Scholar 

  10. J. Yin, S. Ruan, T. Liu, J. Jiang, S. Wang, H. Wei, and P. Yan, All-fiber-optic vector magnetometer based on nano-magnetic fluids filled double-clad photonic crystal fiber. Sens. Actuator B Chem. 238, 518 (2017).

    Article  CAS  Google Scholar 

  11. F. Shi, X. Bai, F. Wang, F. Pang, S. Pu, and X. Zeng, All-fiber magnetic field sensor based on hollow optical fiber and magnetic fluid. IEEE Sens. J. 17, 619 (2017).

    Article  CAS  Google Scholar 

  12. Z. Jiang, J. Dong, S. Hu, Y. Zhang, Y. Chen, Y. Luo, W. Zhu, W. Qiu, H. Lu, H. Guan, Y. Zhong, J. Yu, J. Zhang, and Z. Chen, High-sensitivity vector magnetic field sensor based on side-polished fiber plasmon and ferrofluid. Opt. Lett. 43, 4743 (2018).

    Article  CAS  Google Scholar 

  13. X. Zhou, and X. Ling, Enhanced photonic spin hall effect due to surface plasmon resonance. IEEE Photon. J. 8, 4801108 (2016).

    Google Scholar 

  14. A. Srivastava, A.K. Sharma, and Y.K. Prajapati, On the sensitivity-enhancement in plasmonic biosensor with photonic spin Hall effect at visible wavelength. Chem. Phys. Lett. 774, 138613 (2021).

    Article  CAS  Google Scholar 

  15. X. Zhou, L. Sheng, and X. Ling, Photonic spin Hall effect enabled RI sensor using weak measurements. Sci. Rep. 8, 1221 (2018).

    Article  Google Scholar 

  16. S. Zhong, T. Guan, Y. Xu, C. Zhou, L. Shi, C. Guo, X. Zhou, Z. Li, Y. He, and X. Xing, Simultaneous sensing axial and radial magnetic fields based on weak measurement. Opt. Commun. 486, 12677 (2021).

    Article  Google Scholar 

  17. Y.K. Prajapati, Enhancing photonic spin hall effect in the SPR structure using antimonene: a sensing application. Superlattice. Microst. 155, 106886 (2021).

    Article  CAS  Google Scholar 

  18. A.K. Sharma, and T. Nagao, Design of a silicon-based plasmonic optical sensor for magnetic field monitoring in the infrared. Appl. Phys. B. 117, 363 (2014).

    Article  CAS  Google Scholar 

  19. Z. Zhang, H. Su, H. Gong, S. Wang, M. Zhang, H. Liang and C. Zhang, Graphene Based Surface Plasmon Resonance Gas Sensor with Magnetic Field Control for Terahertz. in Progress in Electromagnetics Research Symposium (2017) pp. 3068-3072.

  20. D.A. Bandurin, D. Svintsov, I. Gayduchenko, S.G. Xu, A. Principi, M. Moskotin, I. Tretyakov, D. Yagodkin, S. Zhukov, T. Taniguchis, K. Watanabe, I.V. Grigorieva, M. Polini, G.N. Goltsman, A.K. Geim, and G. Fedorov, Resonant terahertz detection using graphene plasmons. Nat. Comm. 9, 5392 (2018).

    Article  CAS  Google Scholar 

  21. R. Cheng, Y. Zhou, H. Liu, J. Liu, G. Sun, X. Zhou, H. Shen, Q. Wang, and Y. Zha, Tunable graphene-based terahertz absorber via an external magnetic field. Opt. Mater. Express 10, 501 (2020).

    Article  CAS  Google Scholar 

  22. L. Tony, and P. Avouris, Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8, 1086 (2014).

    Article  Google Scholar 

  23. X. Zhou, Z. Xiao, H. Luo, and S. Wen, Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements. Phys. Rev. A 85, 043809 (2012).

    Article  Google Scholar 

  24. Q. Wang, X. Jiang, X. Wang, X. Dai, and Y. Xiang, Enhancing photonic spin Hall effect in the surface plasmon resonance structure covered by the graphene-MoS2 heterostructure. IEEE Photon. J. 9, 6102610 (2017).

    Google Scholar 

  25. S. Chen, X. Zhou, C. Mi, H. Luo, and S. Wen, Modified weak measurements for detecting photonic spin Hall effect. Phys. Rev. A 91, 062105 (2015).

    Article  Google Scholar 

  26. Z. Jiaqi, B. Ruan, Q. You, J. Guo, X. Dai, and Y. Xiang, Terahertz imaging sensor based on the strong coupling of surface plasmon polaritons between PVDF and graphene. Sens. Actuator B-Chem 264, 398 (2018).

    Article  Google Scholar 

  27. A.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, and A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009).

    Article  Google Scholar 

  28. Laser thickness gauge, http://www.goldensen.com/en/show.asp?id=4. Accessed 26 September 2021

  29. R. Gao, and Y. Jiang, Magnetic fluid-filled microhole in the collapsed region of a photonic crystal fiber for the measurement of a magnetic field. Opt. Lett. 38, 3181 (2013).

    Article  CAS  Google Scholar 

  30. D. Suslov, M. Komanec, E.R. Numkam Fokoua, D. Dousek, A. Zhong, S. Zvánovec, T.D. Bradley, F. Poletti, D.J. Richardson, and R. Slavik, Low loss and high-performance interconnection between standard single-mode fiber and antiresonant hollow-core fiber. Sci. Rep. 11, 8799 (2021).

    Article  CAS  Google Scholar 

  31. H. Liang, T. Shen, Y. Feng, H. Liu, and W. Han, A D-shaped photonic crystal fiber refractive index sensor coated with graphene and zinc oxide. Sensors 2021, 71 (2021).

    Google Scholar 

  32. T. Del Rosso, J.E.H. Sánchez, R.D.S. Carvalho, O. Pandoli, and M. Cremona, Accurate and simultaneous measurement of thickness and RI of thermally evaporated thin organic films by surface plasmon resonance spectroscopy. Opt. Express 22, 18914 (2014).

    Article  Google Scholar 

  33. S. Pevec, and D. Donlagic, Miniature fiber-optic Fabry-Perot RI sensor for gas sensing with a resolution of 5×10-9 RIU. Opt. Express 26, 23868 (2018).

    Article  CAS  Google Scholar 

  34. P. Childs, A. Candiani, and S. Pissadakis, Optical fiber cladding ring magnetic field sensor. IEEE Photonics Technol. Lett. 23, 929 (2011).

    Article  CAS  Google Scholar 

  35. E.R. Schwendtner, N.D. Herrera, M. Navarrete, A.G. Cano, and Ó. Esteban, Plasmonic sensor based on tapered optical fibers and magnetic fluids for measuring magnetic fields. Sens. Actuator A Phys. 264, 58 (2017).

    Article  Google Scholar 

  36. Q. Wang, X. Liu, Y. Zhao, R. Lv, H. Hu, and J. Li, Magnetic field sensing based on fiber loop ring-down spectroscopy and etched fiber interacting with magnetic fluid. Opt. Commun. 356, 628 (2015).

    Article  CAS  Google Scholar 

  37. Y. Zhao, D. Wu, and R.-Q. Lv, Magnetic field sensor based on photonic crystal fiber taper coated with ferrofluid. IEEE Photonics Technol. Lett. 27, 26 (2015).

    Article  Google Scholar 

  38. Y. Zhao, R.-Q. Lv, D. Wang, and Q. Wang, Fiber optic Fabry-Perot magnetic field sensor with temperature compensation using a fiber Bragg grating. IEEE Trans. Instrum. Meas. 63, 2210 (2014).

    Article  Google Scholar 

  39. J. Xia, F. Wang, H. Luo, Q. Wang, and S. Xiong, A magnetic field sensor based on a magnetic fluid-filled FP-FBG structure. Sensors 15, 620 (2016).

    Article  Google Scholar 

  40. P. Zu, C. Chan, W. Lew, Y. Jin, Y. Zhang, H. Liew, L. Chen, W. Wong, and X. Dong, Magneto-optical fiber sensor based on magnetic fluid. Opt. Lett. 37, 398 (2012).

    Article  Google Scholar 

  41. H. Lee, D.Y. Lee, M.G. Kang, Y. Koo, T. Chim, and K.D. Park, Tip-enhanced photoluminescence nano-spectroscopy and nano-imaging. Nanophotonics 9, 3089 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Anuj K. Sharma (as Principal Investigator) and Yogendra Kumar Prajapati (as Co-Principal Investigator) gratefully acknowledge the Science and Engineering Research Board (SERB), India for “Core Research Grant” funding under the Project No. CRG/2019/002636 for carrying out this research work. The authors are thankful to Ms. Hina F. Badgujar (Central University of Gujarat, India) for assisting with figure resolution during the revision stage.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuj K. Sharma.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popescu, V.A., Sharma, A.K. & Prajapati, Y.K. Graphene-Based Plasmonic Detection of Magnetic Field and Gaseous Medium with Photonic Spin Hall Effect in a Broad Terahertz Region. J. Electron. Mater. 51, 2889–2899 (2022). https://doi.org/10.1007/s11664-022-09537-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09537-3

Keywords

Navigation