Skip to main content

Advertisement

Log in

Electrochemical Fabrication of Multicomponent Electrode for Supercapacitors

  • Review Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Increasing operating voltage and capacitance are effective ways to increase energy density for supercapacitors. Electrode materials with a wide energy storage potential window are urgently needed to assemble high-performance symmetric supercapacitors, which are more reliable than asymmetric supercapacitors, as the uncertainty of real working potential ranges of the cathode and anode in the operated symmetric supercapacitor can be reduced. In this work, a multicomponent electrode of Na0.2MnO2/Fe-FeOOH/MnO2/REG was fabricated which showed an extended potential window of −1.1 V to 1.25 V for charge storage. Oxygen and hydrogen evolution reactions were restrained by the manganese oxides and iron materials, respectively. The electrode displayed high specific capacitance of 1528 mF cm−2 (611.2 F g−1) at a current density of 1 mA cm−2, with excellent rate capability (87.3% and 66.7% capacitance retention upon 20-fold and 100-fold increased current). The assembled symmetric supercapacitor displayed high energy of 120.5 Wh kg−1 at a high power density of 2.35 kW kg−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. Simon, Y. Gogotsi, and B. Dunn, Where do batteries end and supercapacitors begin? Science 343, 1210 (2014).

    Article  CAS  Google Scholar 

  2. Z.N. Yu, L. Tetard, L. Zhai, and J. Thomas, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 8, 702 (2015).

    Article  CAS  Google Scholar 

  3. N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai, Y. Jung, and J. Thomas, Asymmetric supercapacitor electrodes and devices. Adv. Mater. 29, 1605336 (2017).

    Article  Google Scholar 

  4. L.L. Zhang, and X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520 (2009).

    Article  CAS  Google Scholar 

  5. X. Cao, C. Tan, X. Zhang, W. Zhao, and H. Zhang, Solution-processed two-dimensional metal dichalcogenide-based nanomaterials for energy storage and conversion. Adv. Mater. 28, 6167 (2016).

    Article  CAS  Google Scholar 

  6. P. Simon, and Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845 (2008).

    Article  CAS  Google Scholar 

  7. J. Kondoh, I. Ishii, H. Yamaguchi, A. Murata, K. Otani, K. Sakuta, N. Higuchi, S. Sekine, and M. Kamimoto, Electrical energy storage systems for energy networks. Energy Convers. Manag. 41, 1863 (2000).

    Article  Google Scholar 

  8. D.P. Dubal, O. Ayyad, V. Ruiz, and P. Gomez-Romero, Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem. Soc. Rev. 44, 1777 (2015).

    Article  CAS  Google Scholar 

  9. H.X. Wang, and Y. Cui, Nanodiamonds for energy. Carbon Energy 1, 13–18 (2019).

    Article  Google Scholar 

  10. Sh.H. Shen, R.F. Zhou, Y.H. Li, B. Liu, G.X. Pan, Q. Liu, Q.Q. Xiong, X.L. Wang, X.H. Xia, and J.P. Tu, Bacterium, fungus, and virus microorganisms for energy storage and conversion. Small Methods 3, 1900596 (2019).

    Article  CAS  Google Scholar 

  11. Q.J. Zong, Q.C. Zhang, X. Mei, Q.L. Li, Z.Y. Zhou, D. Li, M.Y. Chen, F.Y. Shi, J. Sun, Y.G. Yao, and Z.X. Zhang, Facile synthesis of Na-doped MnO2 nanosheets on carbon nanotube fibers for ultrahigh-energy-density all-solid-state wearable asymmetric supercapacitors. ACS Appl. Mater. Interfaces 10, 37233 (2018).

    Article  CAS  Google Scholar 

  12. Y.H. Dai, L. Chen, V. Babayan, Q.L. Cheng, P. Saha, H. Jiang, and C.Z. Li, Ultrathin MnO2 nanoflakes grown on N-doped carbon nanoboxes for high-energy asymmetric supercapacitors. J. Mater. Chem. A 3, 21337 (2015).

    Article  CAS  Google Scholar 

  13. N. Jabeen, A. Hussain, Q.Y. Xia, S. Sun, J.W. Zhu, and H. Xia, High-performance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na0.5MnO2 nanosheet assembled nanowall arrays. Adv. Mater. 29, 17008 (2017).

    Article  Google Scholar 

  14. Y. Song, X. Cai, X.X. Xu, and X.X. Liu, Integration of nickel–cobalt double hydroxide nanosheets and polypyrrole films with functionalized partially exfoliated graphite for asymmetric supercapacitors with improved rate capability. J. Mater. Chem. A 3, 14712 (2015).

    Article  CAS  Google Scholar 

  15. W.N. Xu, J. Wan, W.C. Huo, Q. Yang, Y.R. Li, C.L. Zhang, X. Gu, and C.G. Hu, Sodium ions pre-intercalation stabilized tunnel structure of Na2Mn8O16 nanorods for supercapacitors with long cycle life. Chem. Eng. J. 354, 1050 (2018).

    Article  CAS  Google Scholar 

  16. Q. Guo, N. Chen, and L.T. Qu, Two-dimensional materials of group-IVA boosting the development of energy storage and conversion. Carbon Energy. 2, 1–18 (2020).

    Article  Google Scholar 

  17. Z.B. Lei, J.T. Zhang, and X.S. Zhao, Ultrathin MnO2 nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes. J. Mater. Chem. 22, 153 (2012).

    Article  CAS  Google Scholar 

  18. G. Yang, and X.X. Liu, Electrochemical fabrication of interconnected tungsten bronze nanosheets for high performance supercapacitor. J. Power Sources 383, 17 (2018).

    Article  CAS  Google Scholar 

  19. H. Natter, M. Schmelzer, M.S. Loffler, C.E. Krill, A. Fitch, and R. Hempelmann, Grain-growth kinetics of nanocrystalline iron studied in situ by synchrotron real-time X-ray diffraction. J. Phys. Chem. B 104, 2467 (2000).

    Article  CAS  Google Scholar 

  20. M. Starowicz, P. Starowicz, J. Zukrowski, J. Przewozńik, A. Lemański, C. Kapusta, and J. Banas, Electrochemical synthesis of magnetic iron oxide nanoparticles with controlled size. J. Nanopart. Res. 13, 7167 (2011).

    Article  CAS  Google Scholar 

  21. Y.Q. Fan, L.M. Wang, Z.P. Ma, W. Dai, H.B. Shao, H.J. Wang, and G.J. Shao, The in situ synthesis of Fe(OH)3 film on Fe foam as efficient anode of alkaline supercapacitor based on a promising Fe3+/Fe0 energy storage. Part. Part. Syst. Charact. 35, 1700484 (2018).

    Article  Google Scholar 

  22. T. Xiong, T.L. Tan, L. Lu, W.S.V. Lee, and J.M. Xue, Harmonizing energy and power density toward 2.7 V asymmetric aqueous supercapacitor. Adv. Energy Mater. 8, 1702630 (2018).

    Article  Google Scholar 

  23. W. Zhang, B. Quan, C. Lee, S.K. Park, X. Li, E. Choi, G. Diao, and Y. Piao, One-step facile solvothermal synthesis of copper ferrite graphene composite as a high-performance supercapacitor material. ACS Appl. Mater. Interfaces 7, 2404 (2015).

    Article  CAS  Google Scholar 

  24. Z. Chen, Y. Qin, D. Weng, Q. Xiao, Y. Peng, X. Wang, H. Li, F. Wei, and Y. Lu, Design and synthesis of hierarchical nanowire composites for electrochemical energy storage. Adv. Funct. Mater. 19, 3420 (2009).

    Article  CAS  Google Scholar 

  25. D.B. Zhang, X.G. Kong, M.H. Jiang, D.Q. Lei, and X.D. Lei, NiOOH-Decorated α-FeOOH nanosheet array on stainless steel for applications in oxygen evolution reactions and supercapacitors. ACS Sustain. Chem. Eng. 7, 4420 (2019).

    Article  CAS  Google Scholar 

  26. R.X. Fei, H.W. Wang, Q. Wang, R.Y. Qiu, S.S. Tang, R. Wang, B.B. He, Y.S. Gong, and H.J. Fan, In situ hard-template synthesis of hollow bowl-like carbon: a potential versatile platform for sodium and zinc ion capacitors. Adv. Energy Mater. 10, 2002741 (2020).

    Article  CAS  Google Scholar 

  27. Z.F. Mao, H.W. Wang, D.L. Chao, R. Wang, B.B. He, Y.S. Gong, and H.J. Fan, Al2O3-assisted confinement synthesis of oxide/carbon hollow composite nanofibers and application in metal-ion capacitors. Small 16, 2001950 (2020).

    Article  CAS  Google Scholar 

  28. Q.C. Zhu, D.Y. Zhao, M.Y. Cheng, J.Q. Zhou, K.A. Owusu, L.Q. Mai, and Y. Yu, A new view of supercapacitors: integrated supercapacitors. Adv. Energy Mater. 9, 1901081 (2019).

    Article  Google Scholar 

  29. S. Rudraa, K. Janani, G. Thamizharasanb, M. Pradhanc, B. Ranid, N.K. Sahud, and A.K. Nayak, Fabrication of Mn3O4-WO3 nanoparticles based nanocomposites symmetric supercapacitor device for enhanced energy storage performance under neutral electrolyte. Electrochim. Acta 406, 139870 (2022).

    Article  Google Scholar 

  30. X. Zhou, H. Dai, X. Huang, Y. Ren, Q. Wang, W. Wang, W. Huang, and X. Dong, Porous trimetallic fluoride Ni-Co-M (M = Mn, Fe, Cu, Zn) nanoprisms as electrodes for asymmetric supercapacitors. Mater. Today Energy 17, 100429 (2020).

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support from the Kaili University's Special project of introducing doctor (BS202101).

Funding

This study was funded by Kaili University's Special project of introducing doctor (BS202101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gan Yang.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Wang, L., Ruan, Y. et al. Electrochemical Fabrication of Multicomponent Electrode for Supercapacitors. J. Electron. Mater. 51, 2004–2013 (2022). https://doi.org/10.1007/s11664-022-09511-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09511-z

Keywords

Navigation