Skip to main content

Size Distribution of Hexagonal Prismatic-Shaped ZnO Nanorods Synthesized by Microwave-Assisted Irradiation of Precursors

Abstract

A microwave irradiation-assisted single-step method is used for the synthesis of ZnO nanorods with a hexagonal prismatic shape, using a customized domestic microwave oven. The effects of different process parameters, including precursor reagents, synthesis time and precursor concentration, are studied. The morphological, structural and optical properties of the ZnO nanorods are investigated using scanning electron microscopy (SEM), powder x-ray diffraction (XRD) and UV–Vis spectroscopy. It is observed that the average diameter of the ZnO nanorods depends on the precursor used, and ZnO nanorods with the smallest diameter of around 300 nm are synthesized when zinc nitrate (ZNH) is used as a precursor. The average diameter of the nanorods, on the other hand, increases as the precursor concentration and synthesis time increase. The average diameter varies from 300 nm to 500 nm depending on the concentration of the precursor, and the length of the nanorods varies within a range of 1.8–3.5 μm. The average length of the nanorods increases as the precursor concentration increases, to an optimum value of 15 mM. It is also observed that an increase in the average length (1.5–4 μm) is associated with the slight increase in diameter up to an optimum synthesis time of 20 min. The best length-to-diameter ratio of the synthesized ZnO nanorods using basic precursor solution is obtained at an optimum concentration of 15 mM and synthesis time of 20 min, using the customized system.

Graphical Abstract

ZnO nanorods are synthesized with microwave irradiation from a customized domestic oven. A low-cost and facile synthesis route for the production of high-aspect-ratio ZnO nanorods is reported. The size of the ZnO nanorods is controllable with different process parameters. The optical properties can be easily tuned by the size of the synthesized ZnO nanorods.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doǧan, V. Avrutin, S.J. Cho, and H. Morko̧, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005).

    Article  CAS  Google Scholar 

  2. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897 (2001).

    Article  CAS  Google Scholar 

  3. A. Tsukazaki, M. Kubota, A. Ohtomo, T. Onuma, K. Ohtani, H. Ohno, S.F. Chichibu, and M. Kawasaki, Blue light-emitting diode based on ZnO. Jpn. J. Appl. Phys. 44, L643 (2005).

    Article  CAS  Google Scholar 

  4. P. Ahmad, A.V. Rao, K.S. Babu, and G.N. Rao, Particle size effect on the dielectric properties of ZnO nanoparticles. Mater. Chem. Phys. 224, 79 (2019).

    Article  CAS  Google Scholar 

  5. T.E.P. Alves, C. Kolodziej, C. Burda, and A. Franco Jr., Effect of particle shape and size on the morphology and optical properties of zinc oxide synthesized by the polyol method. Mater. Des. 146, 125 (2018).

    Article  CAS  Google Scholar 

  6. J. Grabowska, K.K. Nanda, E. McGlynn, J.P. Mosnier, M.O. Henry, A. Beaucamp, and A. Meaney, Synthesis and photoluminescence of ZnO nanowires/nanorods. J. Mater. Sci. Mater. Electron. 16, 397 (2005).

    Article  CAS  Google Scholar 

  7. J. Grabowska, K.K. Nanda, E. McGlynn, J.P. Mosnier, and M.O. Henry, Studying the growth conditions, the alignment and structure of ZnO nanorods. Surf. Coat. Technol. 200, 1093 (2005).

    Article  CAS  Google Scholar 

  8. C. Ronning, P.X. Gao, Y. Ding, Z.L. Wang, and D. Schwen, Manganese-doped ZnO nanobelts for spintronics. Appl. Phys. Lett. 84, 783 (2004).

    Article  CAS  Google Scholar 

  9. J. Grabowska, A. Meaney, K.K. Nanda, J.P. Mosnier, M.O. Henry, J.R. Duclère, and E. McGlynn, Surface excitonic emission and quenching effects in ZnO nanowire/nanowall systems: limiting effects on device potential. Phys. Rev. B 71, 115439 (2005).

    Article  CAS  Google Scholar 

  10. Y.J. Xing, Z.H. Xi, Z.Q. Xue, X.D. Zhang, J.H. Song, R.M. Wang, J. Xu, Y. Song, S.L. Zhang, and D.P. Yu, Optical properties of the ZnO nanotubes synthesized via vapor phase growth. Appl. Phys. Lett. 83, 1689 (2003).

    Article  CAS  Google Scholar 

  11. J.H. Zheng, Q. Jiang, and J.S. Lian, Synthesis and optical properties of flower-like ZnO nanorods by thermal evaporation method. Appl. Surf. Sci. 257, 5083 (2011).

    Article  CAS  Google Scholar 

  12. S. Kumar, P.D. Sahare, and S. Kumar, Optimization of the CVD parameters for ZnO nanorods growth: its photoluminescence and field emission properties. Mater. Res. Bull. 105, 237 (2018).

    Article  CAS  Google Scholar 

  13. E. Karaköse, and H. Çolak, Structural and optical properties of ZnO nanorods prepared by spray pyrolysis method. Energy 140, 92 (2017).

    Article  CAS  Google Scholar 

  14. S. Worasawat, T. Masuzawa, Y. Hatanaka, Y. Neo, H. Mimura, and W. Pecharapa, Synthesis and characterization of ZnO nanorods by hydrothermal method. Mater. Today Proc. 5, 10964 (2018).

    Article  CAS  Google Scholar 

  15. P. Sahoo, A. Sharma, and R. Thangavel, Hydrothermal synthesis, structural and optical investigations of undoped and Mg doped ZnO nanorods. AIP Conf. Proc. 2100, 020095 (2019).

    Article  CAS  Google Scholar 

  16. M.L.M. Napi, S.M. Sultan, R. Ismail, M.K. Ahmad, and G.M.T. Chai, Optimization of a hydrothermal growth process for low resistance 1D fluorine-doped zinc oxide nanostructures. J. Nanomater. 2019, 4574507 (2019).

    Article  CAS  Google Scholar 

  17. X. Zhao, M. Li, and X. Lou, Sol–gel assisted hydrothermal synthesis of ZnO microstructures: morphology control and photocatalytic activity. Adv. Powder Technol. 25, 372 (2014).

    Article  CAS  Google Scholar 

  18. J. Zhu, J. Zhang, H. Zhou, W. Qin, L. Chai, and Y. Hu, Microwave-assisted synthesis and characterization of ZnO-nanorod arrays. Trans. Nonferrous Met. Soc. China (Eng. Ed.) 19, 1578 (2009).

    Article  CAS  Google Scholar 

  19. A.U.H.S. Rana, M. Kang, and H.S. Kim, Microwave-assisted facile and ultrafast growth of ZnO nanostructures and proposition of alternative microwave-assisted methods to address growth stoppage. Sci. Rep. 6, 24870 (2016).

    Article  CAS  Google Scholar 

  20. M. Fang, and Z.W. Liu, Controllable size and photoluminescence of ZnO nanorod arrays on Si substrate prepared by microwave-assisted hydrothermal method. Ceram. Int. 43, 6955 (2017).

    Article  CAS  Google Scholar 

  21. H.U. Chae, A.H.S. Rana, Y.-J. Park, and H.-S. Kim, High-speed growth of ZnO nanorods in preheating condition using microwave-assisted growth method. J. Nanosci. Nanotechnol. 18, 2041 (2018).

    Article  CAS  Google Scholar 

  22. S.T. Tan, A.A. Umar, M. Yahaya, C.C. Yap, and M.M. Salleh, Ultrafast formation of ZnO nanorods via seed-mediated microwave assisted hydrolysis process. J. Phys. Conf. Ser. 431, 012001 (2013).

    Article  CAS  Google Scholar 

  23. G.P. Barreto, G. Morales, and M.L.L. Quintanilla, Microwave assisted synthesis of ZnO nanoparticles: effect of precursor reagents, temperature, irradiation time, and additives on nano-ZnO morphology development. J. Mater. 2013, 478681 (2013).

    Google Scholar 

  24. Z. Zhu, D. Yang, and H. Liu, Microwave-assisted hydrothermal synthesis of ZnO rod-assembled microspheres and their photocatalytic performances. Adv. Powder Technol. 22, 493 (2011).

    Article  Google Scholar 

  25. S. Brahma, J.L. Huang, C.P. Liu, L.M. Kukreja, and S.A. Shivashankar, Low temperature and rapid deposition of ZnO nanorods on Si (100) substrate with tunable optical emissions. Mater. Chem. Phys. 140, 634 (2013).

    Article  CAS  Google Scholar 

  26. Z. Dong, B. Han, S. Qian, and D. Chen, Fluorescent properties of ZnO nanostructures fabricated by hydrothermal method. J. Nanomater. 2012, 25127 (2012).

    Google Scholar 

  27. M. Vollmer, Physics of the microwave. Phys. Educ. 39, 74 (2004).

    Article  Google Scholar 

  28. D.K. Bhat, Facile synthesis of ZnO nanorods by microwave irradiation of zinc–hydrazine hydrate complex. Nanoscale Res. Lett. 3, 31 (2008).

    Article  CAS  Google Scholar 

  29. N. Senthilkumar, E. Vivek, M. Shankar, M. Meena, M. Vimalan, and I.V. Potheher, Synthesis of ZnO nanorods by one step microwave-assisted hydrothermal route for electronic device applications. J. Mater. Sci. Mater. Electron. 29, 2927 (2018).

    Article  CAS  Google Scholar 

  30. M. Zhao, Z. Wang, and S.X. Mao, Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope. Nano Lett. 4, 587 (2004).

    Article  CAS  Google Scholar 

  31. C.J. Lee, T.J. Lee, S.C. Lyu, Y. Zhang, H. Ruh, and H.J. Lee, Field emission from well-aligned zinc oxide nanowires grown at low temperature. Appl. Phys. Lett. 81, 3648 (2002).

    Article  CAS  Google Scholar 

  32. E. Comini, G. Faglia, G. Sberveglieri, Z. Pan, and Z.L. Wang, Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 81, 1869 (2002).

    Article  CAS  Google Scholar 

  33. W.L. Hughes, and Z.L. Wang, Nanobelts as nanocantilevers. Appl. Phys. Lett. 82, 2886 (2003).

    Article  CAS  Google Scholar 

  34. A. Pimentel, D. Nunes, P. Duarte, J. Rodrigues, F.M. Costa, T. Monteiro, R. Martins, and E. Fortunato, Synthesis of long ZnO nanorods under microwave irradiation or conventional heating. J. Phys. Chem. C 41, 5027509 (2014).

    Google Scholar 

  35. S. Brahma, K.J. Rao, and S. Shivashankar, Rapid growth of nanotubes and nanorods of würtzite ZnO through microwave-irradiation of a metalorganic complex of zinc and a surfactant in solution. Bull. Mater. Sci. 33, 89 (2010).

    Article  CAS  Google Scholar 

  36. J.M. Jang, S.D. Kim, H.M. Choi, J.Y. Kim, and W.G. Jung, Morphology change of self-assembled ZnO 3D nanostructures with different pH in the simple hydrothermal process. Mater. Chem. Phys. 113, 389 (2009).

    Article  CAS  Google Scholar 

  37. M.T. Thein, S.Y. Pung, A. Aziz, and M. Itoh, The role of ammonia hydroxide in the formation of ZnO hexagonal nanodisks using sol–gel technique and their photocatalytic study. J. Exp. Nanosci. 10, 1068 (2015).

    Article  CAS  Google Scholar 

  38. S. Xu, and Z.L. Wang, One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res. 4, 1013 (2011).

    Article  CAS  Google Scholar 

  39. F. Hai-Bo, Z. Xin-Liang, W. Si-Cheng, L. Zhi-Gang, and Y. He-Bao, Zn/O ratio and oxygen chemical state of nanocrystalline ZnO films grown at different temperatures. Chin. Phys. B 21, 038101 (2012).

    Article  CAS  Google Scholar 

  40. M.S. Bashar, R. Matin, M. Sultana, A. Siddika, M. Rahaman, M.A. Gafur, and F. Ahmed, Effect of rapid thermal annealing on structural and optical properties of ZnS thin films fabricated by RF magnetron sputtering technique. J. Theor. Appl. Phys. 14, 53 (2020).

    Article  Google Scholar 

  41. L. Roza, V. Fauzia, and M.Y.A. Rahman, Tailoring the active surface sites of ZnO nanorods on the glass substrate for photocatalytic activity enhancement. Surf. Interfaces 15, 117 (2019).

    Article  CAS  Google Scholar 

  42. M.K. Gupta, N. Sinha, B.K. Singh, N. Singh, K. Kumar, and B. Kumar, Piezoelectric, dielectric, optical and electrical characterization of solution grown flower-like ZnO nanocrystal. Mater. Lett. 63, 1910 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would take this opportunity to express their gratitude for the financial help they received from the Bangladesh University of Engineering and Technology. They also thank Bangladesh Council of Scientific and Industrial Research, Dhaka, Bangladesh for the support during the SEM and XRD measurements.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munira Sultana.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sultana, M., Rahman, M.J. & Bashar, M.S. Size Distribution of Hexagonal Prismatic-Shaped ZnO Nanorods Synthesized by Microwave-Assisted Irradiation of Precursors. J. Electron. Mater. 51, 2682–2691 (2022). https://doi.org/10.1007/s11664-022-09496-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09496-9

Keywords

  • ZnO nanorods
  • microwave irradiation
  • x-ray diffraction
  • UV–Vis spectroscopy