Skip to main content

Advertisement

Log in

Co-Mn-B Nanoparticles Supported on Epoxy-Based Polymer as Catalyst for Evolution of H2 from Ammonia Borane Semi-Methanolysis

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A high-density and low-cost hydrogen generation technology is required for hydrogen energy systems. Non-noble multimetallic Co-Mn-B nanoparticles can serve as a good catalyst because of their low cost and ability to produce hydrogen gas during the catalytic semi-methanolysis process. This work reports the synthesis, characterization, and the use of Co-Mn-B catalyst supported on Eupergit CM as a very active and reusable catalyst for the generation of hydrogen from the semi-methanolysis of ammonia borane (AB). Solid materials were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive x-ray spectroscopy (EDX), and scanning electron microscopy (SEM). Rates of hydrogen generation were used to determine the kinetics of semi-methanolysis reaction. The parameters examined, namely the percentage of NaOH, percentage of metal loading, amount of catalyst particles, and AB concentrations and temperatures, were 1–5 (wt)%, 5–10 (wt)%, 5–50 mg, 0.5–3 mmol, and 30–60°C, respectively. Total turnover frequency (TOF) value, hydrogen generation rate, and activation energy (Ea) were obtained at 30°C as 15,751 h−1, 17,324 mL gcat−1min−1 (3 mmol AB and 25 mg Co-Mn-B/Eupergit CM), and 43.936 kJ mol−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M. Momirlan, and T.N. Veziroglu, The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet. Int. J. Hydrog. Energy 30, 795–802 (2005).

    Article  CAS  Google Scholar 

  2. H.N. Abdelhamid, Dehydrogenation of sodium borohydride using cobalt embedded zeolitic imidazolate frameworks. J. Solid State Chem. 297, 122034 (2021).

    Article  CAS  Google Scholar 

  3. R.J. Keaton, J.M. Blacquiere, and R.T. Baker, Base metal catalyzed dehydrogenation of ammonia-borane for chemical hydrogen storage. J. Am. Chem. Soc. 129, 1844 (2007).

    Article  CAS  Google Scholar 

  4. H.C. Kazici, S. Yilmaz, T. Sahan, F. Yildiz, O.F. Er, and H. Kivrak, A comprehensive study of hydrogen production from ammonia borane via PdCoAg/AC nanoparticles and anodic current in alkaline medium: experimental design with response surface methodology. Front. Energy 14, 578–589 (2020).

    Article  Google Scholar 

  5. H.C. Kazici, F. Yildiz, M.S. Izgi, B. Ulas, and H. Kivrak, Novel activated carbon supported trimetallic PdCoAg nanoparticles as efficient catalysts for the hydrolytic dehydrogenation of ammonia borane. Int. J. Hydrog. Energy 44, 10561–10572 (2019).

    Article  CAS  Google Scholar 

  6. H.C. Kazici, F. Salman, M.S. Izgi, and O. Sahin, Synthesis of metal-oxide-supported triple nano catalysts and application to H-2 production and H2O2 oxidation. J. Electron. Mater. 49, 3634–3644 (2020).

    Article  CAS  Google Scholar 

  7. H.N. Abdelhamid, Salts induced formation of hierarchical porous ZIF-8 and their applications for CO2 sorption and hydrogen generation via NaBH4 hydrolysis. Macromol. Chem. Phys 221, 2000031 (2020).

    Article  CAS  Google Scholar 

  8. P.A. Storozhenko, R.A. Svitsyn, V.A. Ketsko, A.K. Buryak, and A.V. Ul’yanov, Ammineborane: synthesis and physicochemical characterization. Russ. J. Inorg. Chem. 50, 980–985 (2005).

    Google Scholar 

  9. C.T.F. Lo, K. Karan, and B.R. Davis, Kinetic studies of reaction between sodium borohydride and methanol, water, and their mixtures. Ind. Eng. Chem. Res. 46, 5478–5484 (2007).

    Article  CAS  Google Scholar 

  10. B.H. Liu, Z.P. Li, and S. Suda, Nickel- and cobalt-based catalysts for hydrogen generation by hydrolysis of borohydride. J. Alloy. Compd. 415, 288–293 (2006).

    Article  CAS  Google Scholar 

  11. Q.L. Yao, K. Yang, X.L. Hong, X.S. Chen, and Z.H. Lu, Base-promoted hydrolytic dehydrogenation of ammonia borane catalyzed by noble-metal-free nanoparticles. Catal. Sci. Technol. 8, 870–877 (2018).

    Article  CAS  Google Scholar 

  12. O. Sahin, M. Kaya, M.S. Izgi, and C. Saka, The effect of microwave irradiation on a co-b-based catalyst for hydrogen generation by hydrolysis of NaBH4 solution. Energy Sourc. Part a-Recov. Utiliz. Environ. Effects 37, 462–467 (2015).

    Article  CAS  Google Scholar 

  13. Q.L. Yao, W.M. Shi, G. Feng, Z.H. Lu, X.L. Zhang, D.J. Tao, D.J. Kong, and X.S. Chen, Ultrafine Ru nanoparticles embedded in SiO2 nanospheres: Highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane. J. Power Sourc. 257, 293–299 (2014).

    Article  CAS  Google Scholar 

  14. Q.L. Yao, Z.H. Lu, Y.S. Jia, X.S. Chen, and X. Liu, In situ facile synthesis of Rh nanoparticles supported on carbon nanotubes as highly active catalysts for H-2 generation from NH3BH3 hydrolysis. Int. J. Hydrog. Energy 40, 2207–2215 (2015).

    Article  CAS  Google Scholar 

  15. N. Cao, J. Su, W. Luo, and G.Z. Cheng, Graphene supported Ru@Co core-shell nanoparticles as efficient catalysts for hydrogen generation from hydrolysis of ammonia borane and methylamine borane. Catal. Commun. 43, 47–51 (2014).

    Article  CAS  Google Scholar 

  16. M. Navlani-Garcia, K. Mori, Y. Kuwahara, and H. Yamashita, Recent strategies targeting efficient hydrogen production from chemical hydrogen storage materials over carbon-supported catalysts. Npg Asia Mater. 10, 277–292 (2018).

    Article  CAS  Google Scholar 

  17. T. Hugle, M.F. Kuhnel, and D. Lentz, Hydrazine borane: a promising hydrogen storage material. J. Am. Chem. Soc. 131, 7444–7446 (2009).

    Article  CAS  Google Scholar 

  18. P.P.V. Ramachandran, and P.D. Gagare, Preparation of ammonia borane in high yield and purity, methanolysis, and regeneration. Inorg. Chem. 46, 7810 (2007).

    Article  CAS  Google Scholar 

  19. F.H. Stephens, V. Pons, and R.T. Baker, Ammonia-borane: the hydrogen source par excellence? Dalton Trans. 25, 2613–2626 (2007).

    Article  Google Scholar 

  20. T. Umegaki, J.M. Yan, X.B. Zhang, H. Shioyama, N. Kuriyama, and Q. Xu, Boron- and nitrogen-based chemical hydrogen storage materials. Int. J. Hydrog. Energy 34, 2303 (2009).

    Article  CAS  Google Scholar 

  21. W.W. Zhan, Q.L. Zhu, and Q. Xu, Dehydrogenation of ammonia borane by metal nanoparticle catalysts. ACS Catal 6, 6892–6905 (2016).

    Article  CAS  Google Scholar 

  22. Storozhenko PA, Svitsyn RA, Ketsko VA, Buryak AK, Ul’yanov AV. Ammine borane: synthesis and physicochemical characterization. Russ J. Inorg. Chem. 50, 1066-71, (2005)

  23. M. Yurderi, A. Bulut, I.E. Ertas, M. Zahmakiran, and M. Kaya, Supported copper-copper oxide nanoparticles as active, stable and low-cost catalyst in the methanolysis of ammonia-borane for chemical hydrogen storage. Appl. Catal. B-Environ. 165, 169–175 (2015).

    Article  CAS  Google Scholar 

  24. D.D. Ke, J. Wang, H.M. Zhang, Y. Li, L. Zhang, X. Zhao, S.M. Han, Hydrolytic dehydrogenation of ammonia borane catalyzed by poly(amidoamine) dendrimers-modified reduced graphene oxide nanosheets supported Ag(0.3)Co(0.7 )nanoparticles. J. Mater. Sci. Technol. 34, 2350-2358 (2018).

  25. H.N. Abdelhamid, A review on hydrogen generation from the hydrolysis of sodium borohydride. Int. J. Hydrog. Energy 46, 726–765 (2021).

    Article  CAS  Google Scholar 

  26. R.M. da Silva, P.M.P. Souza, F.A.N. Fernandes, L.R.B. Goncalves, and S. Rodrigues, Co-immobilization of dextransucrase and dextranase in epoxy-agarose- tailoring oligosaccharides synthesis. Process Biochem. 78, 71–81 (2019).

    Article  CAS  Google Scholar 

  27. P. Torres, A. Datla, V.W. Rajasekar, S. Zambre, T. Ashar, M. Yates, M.L. Rojas-Cervantes, O. Calero-Rueda, V. Barba, M.J. Martinez, A. Ballesteros, and F.J. Plou, Characterization and application of a sterol esterase immobilized on polyacrylate epoxy-activated carriers (Dilbeads (TM)). Catal. Commun. 9, 539–545 (2008).

    Article  CAS  Google Scholar 

  28. M.S. Izgi, O. Sahin, E. Onat, and C. Saka, Epoxy-activated acrylic particulate polymersupported Co-Fe-Ru-B catalyst to produce H2 from hydrolysis of NH3BH3. Int. J. Hydrog. Energy 45, 22638–22648 (2020).

    Article  CAS  Google Scholar 

  29. J. Hannauer, U.B. Demirci, G. Pastor, C. Geantet, J.M. Herrmannb, and P. Miele, Hydrogen release through catalyzed methanolysis of solid sodium borohydride. Energy Environ. Sci. 3, 1796 (2010).

    Article  CAS  Google Scholar 

  30. X. Zhang, Y.T. Qian, Y.C. Zhu, and K.B. Tang, Synthesis of Mn2O3 nanomaterials with controllable porosity and thickness for enhanced lithium-ion batteries performance. Nanoscale 6, 1725–1731 (2014).

    Article  CAS  Google Scholar 

  31. M.S. Izgi, M.S. Ece, H.C. Kazici, O. Sahin, and E. Onat, Hydrogen production by using Ru nanoparticle decorated with Fe3O4@SiO2-NH2 core-shell microspheres. Int. J. Hydrog. Energy 45, 30415–30430 (2020).

    Article  CAS  Google Scholar 

  32. N. Sahiner, and A.O. Yasar, A new application for colloidal silica particles: natural, environmentally friendly, low-cost, and reusable catalyst material for H-2 production from NaBH4 methanolysis. Ind. Eng. Chem. Res. 55, 11245–11252 (2016).

    Article  CAS  Google Scholar 

  33. F. Ali, S.B. Khan, and A.M. Asiri, Chitosan coated cellulose cotton fibers as catalyst for the H-2 production from NaBH4 methanolysis. Int. J. Hydrog. Energy 44, 4143–4155 (2019).

    Article  CAS  Google Scholar 

  34. H. Erdogan, O. Metin, and S. Ozkar, Hydrogen generation from the methanolysis of ammonia borane catalyzed by in situ generated, polymer stabilized ruthenium(0) nanoclusters. Catal. Today 170, 93–98 (2011).

    Article  CAS  Google Scholar 

  35. S.B. Kalidindi, U. Sanyal, and B.R. Jagirdar, Nanostructured Cu and Cu@Cu2O core shell catalysts for hydrogen generation from ammonia-borane. Phys. Chem. Chem. Phys. 10, 5870–5874 (2008).

    Article  CAS  Google Scholar 

  36. S.B. Kalidindi, A.A. Vernekar, and B.R. Jagirdar, Co-Co2B, Ni-Ni3B and Co-Ni-B nanocomposites catalyzed ammonia-borane methanolysis for hydrogen generation. Phys. Chem. Chem. Phys. 11, 770–775 (2009).

    Article  CAS  Google Scholar 

  37. D.H. Sun, V. Mazumder, O. Metin, and S.H. Sun, Methanolysis of ammonia borane by CoPd nanoparticles. ACS Catal. 2, 1290–1295 (2012).

    Article  CAS  Google Scholar 

  38. N. Tunc, and M. Rakap, Preparation and characterization of Ni-M (M: Ru, Rh, Pd) nanoclusters as efficient catalysts for hydrogen evolution from ammonia borane methanolysis. Renew. Energy 155, 1222–1230 (2020).

    Article  CAS  Google Scholar 

  39. D. Ozhava, N.Z. Kilicaslan, and S. Ozkar, PVP-stabilized nickel(0) nanoparticles as catalyst in hydrogen generation from the methanolysis of hydrazine borane or ammonia borane. Appl. Catal. B-Environ. 162, 573–582 (2015).

    Article  CAS  Google Scholar 

  40. S. Caliskan, M. Zahmakiran, and S. Ozkar, Zeolite confined rhodium(0) nanoclusters as highly active, reusable, and long-lived catalyst in the methanolysis of ammonia-borane. Appl. Catal. B-Environ. 93, 387–394 (2010).

    Article  CAS  Google Scholar 

  41. J.H. Kim, K.T. Kim, Y.M. Kang, H.S. Kim, M.S. Song, Y.J. Lee, P.S. Lee, and J.Y. Lee, Study on degradation of filamentary Ni catalyst on hydrolysis of sodium borohydride. J. Alloy. Compd. 379, 222–227 (2004).

    Article  CAS  Google Scholar 

  42. H.B. Dai, X.D. Kang, and P. Wang, Ruthenium nanoparticles immobilized in montmorillonite used as catalyst for methanolysis of ammonia borane. Int. J. Hydrog. Energy 35, 10317–10323 (2010).

    Article  CAS  Google Scholar 

  43. Y. Shang, R. Chen, and G. Jiang, Kinetic study of NaBH4 hydrolysis over carbon-supported ruthenium. Int. J. Hydrog. Energy 33, 6719–6726 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilal Çelik Kazıcı.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 268 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazıcı, H.Ç., İzgi, M.S. & Şahin, Ö. Co-Mn-B Nanoparticles Supported on Epoxy-Based Polymer as Catalyst for Evolution of H2 from Ammonia Borane Semi-Methanolysis. J. Electron. Mater. 51, 2356–2368 (2022). https://doi.org/10.1007/s11664-022-09491-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09491-0

Keywords

Navigation