Skip to main content
Log in

First-Principles Study on the Tunable Electronic and Magnetic Properties of a Janus GaInSeTe Nanosheet via Strain and Defect Engineering

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Recently, Janus two-dimensional (2D) materials have gained much attention due to their intrinsic vertical dipole. Here, we extensively investigate the electronic and magnetic properties of a new type of two-dimensional graphene-like Janus GaInSeTe monolayer by adopting the first-principles methods based on the density functional theory. It is found that 2D Janus GaInSeTe exhibits high dynamical stability and acts as a direct band gap semiconductor. The novel electronic and magnetic properties of the GaInSeTe nanosheet can be modulated via biaxial strain and atomic-sized structural defects. Specifically, the significant changes of semiconductor-to-metal and direct-to-indirect semiconductor transitions are driven by the biaxial strain. Our results also confirm that different types of single vacancy and multiple vacancy can effectively alter the electronic and magnetic properties of the GaInSeTe monolayer. Depending on the different vacancies, they induce metallic (\(V_\mathrm{Ga}\) and \(V_\mathrm{In}\)), direct band-gap semiconductive (V\(_\mathrm{Se}\), \(V_\mathrm{GaIn}\) and \(V_\mathrm{GaInTeSe}\)) and indirect band-gap semiconductor (\(V_\mathrm{Te}\), \(V_\mathrm{TeSe}\)), respectively. It was also found that the inclusion of an In vacancy induces magnetism in the Janus GaInSeTe monolayer. Moreover, results show that the electronic and magnetic properties of Janus GaInSeTe monolayer are significantly modulated by vacancies and the external strains, and it displays varied band gaps of magnetic or nonmagnetic, multiple magnetic moments in semiconducting or metallic structures. These tunable electronic structure and magnetic properties of the Janus GaInSeTe monolayer can be utilized for the development of low-dimensional spintronics devices.

Graphical Abstract

The electronic and magnetic properties of a Janus GaInSeTe monolayer are significantly modulated by vacancies and the external strain, and it displays varied magnetic or nonmagnetic band gaps and multiple magnetic moments in semiconducting or metallic structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  CAS  Google Scholar 

  2. R. Mas-Balleste, C. Gomez-Navarro, J. Gomez-Herrero, F. Zamora, 2D materials: to graphene and beyond. Nanoscale 3, 20–30 (2011)

    Article  CAS  Google Scholar 

  3. S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 1–15 (2017)

    Article  Google Scholar 

  4. Q. Liu, L. Li, Y. Li, Z. Gao, Z. Chen, J. Lu, Tuning electronic structure of bilayer MoS\(_{2}\) by vertical electric field: a first-principles investigation. J. Phys. Chem. C 116, 21556–21562 (2012)

    Article  CAS  Google Scholar 

  5. C.C. Wu, D. Jariwala, V.K. Sangwan, T.J. Marks, M.C. Hersam, L.J. Lauhon, Elucidating the photoresponse of ultrathin MoS\(_{2}\) field-effect transistors by scanning photocurrent microscopy. J. Phys. Chem. Lett. 4, 2508–2513 (2013)

    Article  CAS  Google Scholar 

  6. X. Li, S. Guo, J. Su, X. Ren, Z. Fang, Efficient Raman enhancement in molybdenum disulfide by tuning the interlayer spacing. ACS Appl. Mater. Interfaces 12, 28474–28483 (2020)

    Article  CAS  Google Scholar 

  7. N.U. Din, V. Turkowski, T.S. Rahman, Ultrafast charge dynamics and photoluminescence in bilayer MoS\(_{2}\). 2D Mater 8, 025018 (2021)

    Article  CAS  Google Scholar 

  8. X.G. Zhao, Z. Shi, X. Wang, H. Zou, Y. Fu, L. Zhang, Band structure engineering through van der Waals heterostructing superlattices of two-dimensional transition metal dichalcogenides. InfoMat 3, 201–211 (2021)

    Article  CAS  Google Scholar 

  9. Y. Zhang, Z. Zhan, F. Guinea, J.A. Silva Guillén, S. Yuan, Tuning band gaps in twisted bilayer MoS\(_{2}\). Phys. Rev. B 102, 235418 (2020)

    Article  CAS  Google Scholar 

  10. C. Ke, Y. Wu, J. Zhou, Z. Wu, C. Zhang, X. Li, J. Kang, Modification of the electronic and spintronic properties of monolayer GaGeTe with a vertical electric field. J. Phys. D Appl. Phys 52, 115101 (2019)

    Article  Google Scholar 

  11. R. Ganatra, Q. Zhang, Few-layer MoS\(_{2}\): a promising layered semiconductor. ACS Nano 8, 4074–4099 (2014)

    Article  CAS  Google Scholar 

  12. M. Pandey, F.A. Rasmussen, K. Kuhar, T. Olsen, K.W. Jacobsen, K.S. Thygesen, Defect-tolerant monolayer transition metal dichalcogenides. Nano Lett. 16, 2234–2239 (2016)

    Article  CAS  Google Scholar 

  13. C. Xia, W. Xiong, J. Du, T. Wang, Y. Peng, J. Li, Universality of electronic characteristics and photocatalyst applications in the two-dimensional Janus transition metal dichalcogenides. Phys. Rev. B 98, 165424 (2018)

    Article  CAS  Google Scholar 

  14. V. Van Thanh, N.D. Van, R. Saito, N.T. Hung, First-principles study of mechanical, electronic and optical properties of Janus structure in transition metal dichalcogenides. Appl. Surf. Sci. 526, 146730 (2020)

    Article  CAS  Google Scholar 

  15. M.M. Petrić, M. Kremser, M. Barbone, Y. Qin, Y. Sayyad, Y. Shen, S. Tongay, J.J. Finley, A.R. Botello Méndez, K. Müller, Raman spectrum of Janus transition metal dichalcogenide monolayers WSSe and MoSSe. Phys. Rev. B 103, 035414 (2021)

    Article  Google Scholar 

  16. A.Y. Lu, H. Zhu, J. Xiao, C.P. Chuu, Y. Han, M.H. Chiu, C.C. Cheng, C.W. Yang, K.H. Wei, Y. Yang, Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 12, 744–749 (2017)

    Article  CAS  Google Scholar 

  17. J. Zhang, S. Jia, I. Kholmanov, L. Dong, D. Er, W. Chen, H. Guo, Z. Jin, V.B. Shenoy, L. Shi, Janus monolayer transition-metal dichalcogenides. ACS Nano 11, 8192–8198 (2017)

    Article  CAS  Google Scholar 

  18. R. Li, Y. Cheng, W. Huang, Recent progress of Janus 2D transition metal chalcogenides: from theory to experiments. Small 14, 1802091 (2018)

    Article  Google Scholar 

  19. Y.C. Lin, C. Liu, Y. Yu, E. Zarkadoula, M. Yoon, A.A. Puretzky, L. Liang, X. Kong, Y. Gu, A. Strasser, Low energy implantation into transition-metal dichalcogenide monolayers to form Janus structures. ACS Nano 14, 3896–3906 (2020)

    Article  CAS  Google Scholar 

  20. D.B. Trivedi, G. Turgut, Y. Qin, M.Y. Sayyad, D. Hajra, M. Howell, L. Liu, S. Yang, N.H. Patoary, H. Li, Room-temperature synthesis of 2D janus crystals and their heterostructures. Adv. Mater. 32, 2006320 (2020)

    Article  CAS  Google Scholar 

  21. Y. Guo, S. Zhou, Y. Bai, J. Zhao, Enhanced piezoelectric effect in Janus group-III chalcogenide monolayers. Appl. Phys. Lett. 110, 163102 (2017)

    Article  Google Scholar 

  22. A. Huang, W. Shi, Z. Wang, Optical properties and photo- 8 catalytic applications of two-dimensional Janus group-III monochalcogenides. J. Phys. Chem. C 123, 11388–11396 (2019)

    Article  CAS  Google Scholar 

  23. N. Van Chuong, N.N. Hieu, N. Van Hieu, Theoretical prediction of the structural and electronic properties of a single layer graphene-like two-dimensional janus GaInSTe. VNU J. Sci. Math. Phys. 37, 93–99 (2021)

    Google Scholar 

  24. G. Kresse, J. Furthmüller, J. Hafner, Theory of the crystal structures of selenium and tellurium: the effect of generalized-gradient corrections to the local-density approximation. Phys. Rev. B 50, 13181 (1994)

    Article  CAS  Google Scholar 

  25. G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996)

    Article  CAS  Google Scholar 

  26. P. Blöchl, Generalized gradient approximation made simple. Phys. Rev. B 50, 17953 (1994)

    Article  Google Scholar 

  27. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  CAS  Google Scholar 

  28. J. Heyd, G.E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003)

    Article  CAS  Google Scholar 

  29. D. Chadi, Special points for Brillouin-zone integrations. Phys. Rev. B 16, 1746 (1977)

    Article  Google Scholar 

  30. S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006)

    Article  CAS  Google Scholar 

  31. D. Alfè, PHON: a program to calculate phonons using the small displacement method. Phys. Commun. 180, 2622–2633 (2009)

    Article  Google Scholar 

  32. P. Wang, Y. Zong, H. Liu, H. Wen, H. Wu, J. Xia, Highly efficient photocatalytic water splitting and enhanced piezoelectric properties of 2D Janus group-III chalcogenides. J. Mater. Chem. C 9, 4989 (2021)

    Article  CAS  Google Scholar 

  33. H. Xiao, J. Tahir-Kheli, W.A. Goddard III., Accurate band gaps for semiconductors from density functional theory. J. Phys. Chem. C 2, 212–217 (2011)

    CAS  Google Scholar 

  34. T. Chen, L. Xu, Q. Li, X. Li, M. Long, Direction and strain controlled anisotropic transport behaviors of 2D GeSe-phosphorene vdW heterojunctions. Nanotechnology 30, 445703 (2019)

    Article  CAS  Google Scholar 

  35. G. Liu, T. Chen, Z. Xu, G. Zhou, X. Xiao, Computational insights into electronic characteristics of 2D PtSe\(_{2}\) nanomaterials: effects of vacancy defects and strain engineering. Vacuum 194, 110585 (2021)

    Article  CAS  Google Scholar 

  36. T. Chen, H. Li, Y. Zhu, D. Liu, G. Zhou, L. Xu, Carbon phosphide nanosheets and nanoribbons: insights on modulating their electronic properties by first principles calculations. Phys. Chem. Chem. Phys. 22, 22520–22528 (2020)

    Article  CAS  Google Scholar 

  37. S. Soni, S. Kumar, B. Dalela, S. Kumar, P.A. Alvi, S. Dalela, Defects and oxygen vacancies tailored structural and optical properties in CeO\(_{2}\) nanoparticles doped with Sm\(^{3+}\) cation. J. Alloy. Compd. 752, 520–531 (2018)

    Article  CAS  Google Scholar 

  38. S. Soni, N. Chouhan, R.K. Meena, S. Kumar, B. Dalela, M. Mishra, R.S. Meena, G. Gupta, S. Kumar, P.A. Alvi, S. Dalela, Electronic structure and room temperature ferromagnetism in Gd-doped cerium oxide nanoparticles for hydrogen generation via photocatalytic water splitting. Glob. Chall. 3, 1800090 (2019)

    Article  Google Scholar 

  39. A. Bafekry, M. Yagmurcukardes, B. Akgenc, M. Ghergherehchi, C.V. Nguyen, Van der Waals heterostructures of MoS\(_{2}\) and Janus MoSSe monolayers on graphitic boron-carbon-nitride (BC\(_{3}\), C\(_{3}\)N, C\(_{3}\)N\(_{4}\) and C\(_{4}\)N\(_{3}\)) nanosheets: a first-principles study. J. Phys. D Appl. Phys 53, 355106 (2020)

    Article  CAS  Google Scholar 

  40. X. Fan, Y. Li, L. Su, K. Ma, J. Li, H. Zhang, Theoretical prediction of tunable electronic and magnetic properties of monolayer antimonene by vacancy and strain. Appl. Surf. Sci. 488, 98–106 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the support from the National Natural Science Foundation of China (Grant No.62101221), the Natural Science Foundation of Jiangxi Province (20192BAB212001), and the Program of Qingjiang Excellent Young Talents, Jiangxi University of Science and Technology (Grant No.JXUSTQJYX201805), and the Science and Technology Planning Project of Ganzhou City.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1892 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Liu, G., Dong, X. et al. First-Principles Study on the Tunable Electronic and Magnetic Properties of a Janus GaInSeTe Nanosheet via Strain and Defect Engineering. J. Electron. Mater. 51, 2212–2220 (2022). https://doi.org/10.1007/s11664-022-09481-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09481-2

Keywords

Navigation