Skip to main content
Log in

Sensitivity Analysis of Biomolecule Nanocavity Immobilization in a Dielectric Modulated Triple-Hybrid Metal Gate-All-Around Junctionless NWFET Biosensor for Detecting Various Diseases

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, a novel biomolecule nanocavity immobilization in a dielectric modulated triple-hybrid metal gate-all-around (THM-GAA) junctionless (JL) NWFET has been proposed to improve sensitivity for detecting various diseases. A comparative analysis of the dielectric modulated triple-hybrid metal gate-all-around JL-NWFET biosensor has been carried out with unique and double-hybrid metal gate (DHM) transistors immobilizing different biomolecules (neutral) such as streptavidin, \({\text{ChO}}_{X}\), APTES, uricase, and biotin in the nanogap cavity region. The simulation results were analyzed using the Atlas-3D device simulation tool. The work shows that higher work-function and higher dielectric materials near the drain suppress/overcome short-channel effects and quantum mechanical tunneling caused by hot-carrier and electron scattering due to a high electric field and saturation velocity. The impact of neutral biomolecules on device output characteristics such as switching (\(I_{{{\text{ON}}}} /I_{{{\text{OFF}}}}\)) ratio, shifting threshold voltage (\(\Delta V_{{{\text{th}}}}\)), intrinsic voltage gain \(\left( {g_{m} /g_{d} } \right)\), drain off-current sensitivity \(\left( {S_{{I_{{{\text{OFF}}}} }} } \right)\), subthreshold slope, transconductance \(\left( {g_{m} } \right)\), output conductance \(\left( {g_{d} } \right)\), surface potential and output resistance \(\left( {1/g_{d} } \right)\) has been studied. Sensitivity of the proposed device for detecting a specific neutral biomolecule was examined using a drain off-current ratio, and the results were compared with available works. The result shows a higher sensitivity in a triple-hybrid metal gate transistor than a unique and double-hybrid metal gate transistor in addition to available works, as we have discussed under the results and discussion section. For example, drain off-current sensitivity (\(S_{{I_{{{\text{OFF}}}} }}\)) in a triple-hybrid metal gate when a biotin biomolecule is immobilized uniformly in the nanogap cavity was 217.6% and 46.43% higher than a unique and double-hybrid metal gate transistor, respectively. We found that the proposed device can detect a specific biomolecule to diagnose different biomarkers for diseases such as breast and lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Reference

  1. Y.-C. Syu, W.-E. Hsu, and C.-T. Lin, Review—field-effect transistor biosensing: devices and clinical applications. ECS J. Solid State Sci. Technol. 7, Q3196 (2018).

    Article  CAS  Google Scholar 

  2. H.C. Lau, T.E. Bae, H.J. Jang, J.Y. Kwon, W.J. Cho, and J.O. Lim, Saliva-based screening approach for Alzheimer’s disease via the cell-oriented ion-sensitive field-effect transistor. Sens. Lett. 12, 1096 (2014).

    Article  Google Scholar 

  3. N. Lu, A. Gao, P. Dai, H. Mao, X. Zuo, C. Fan, Y. Wang, and T. Li, Ultrasensitive detection of dual cancer biomarkers with integrated CMOS-compatible nanowire arrays. Anal. Chem. 87, 11203 (2015).

    Article  CAS  Google Scholar 

  4. V.M. Generalov, O.V. Naumova, B.I. Fomin, S.A. Pyankov, I.V. Khlistun, A.S. Safatov, B.N. Zaitsev, E.G. Zaitseva, and A.L. Aseev, Detection of ebola virus VP40 protein using a nanowire SOI biosensor. Optoelectron. Instrum. Data Process. 55, 618 (2019).

    Article  Google Scholar 

  5. K.Y. Park, M.S. Kim, and S.Y. Choi, Fabrication and characteristics of MOSFET protein chip for detection of ribosomal protein. Biosens. Bioelectron. 20, 2111 (2015).

    Article  CAS  Google Scholar 

  6. C. Gouvea, Biosensors for health applications, in Open Access Peer-Reviewed Chapter, edited by Pier Andrea Serra (IntechOpen, Universidade Federal de Alfenas, Brazil, n.d.).

  7. D. Sarkar, and K. Banerjee, Proposal for tunnel-field-effect-transistor as ultra-sensitive and label-free biosensors. Appl. Phys. Lett. 100, 143108 (2012).

    Article  CAS  Google Scholar 

  8. Y. Pratap, M. Kumar, S. Kabra, S. Haldar, R.S. Gupta, and M. Gupta, Analytical modeling of gate-all-around junctionless transistor based biosensors for detection of neutral biomolecule species. J. Comput. Electron. 17, 288 (2018).

    Article  CAS  Google Scholar 

  9. B. Kumar, and R. Chaujar, TCAD temperature analysis of gate stack gate all around (GS-GAA) FinFET for improved RF and wireless performance. Silicon 13, 3741 (2021).

    Article  CAS  Google Scholar 

  10. J.T. Qu, H.M. Zhang, X.B. Xu, and S.S. Qin, Study of drain induced barrier lowering(DIBL) effect for strained Si NMOSFET. Procedia Eng. 16, 298 (2011).

    Article  CAS  Google Scholar 

  11. I. Sarangadharan, A.K. Pulikkathodi, C.-H. Chu, Y.-W. Chen, A. Regmi, P.-C. Chen, C.-P. Hsu, and Y.-L. Wang, Review—high field modulated FET biosensors for biomedical applications. ECS J. Solid State Sci. Technol. 7, Q3032 (2018).

    Article  CAS  Google Scholar 

  12. T. Windbacher, V. Sverdlov, and S. Selberherr, Biotin-streptavidin sensitive BioFETs and their properties. Commun. Comput. Inf. Sci. 52, 85 (2010).

    Google Scholar 

  13. P. Ambhorkar, Z. Wang, H. Ko, S. Lee, K.I. Koo, K. Kim, and D.I.D. Cho, Nanowire-based biosensors: from growth to applications. Micromachines 9, 1 (2018).

    Article  Google Scholar 

  14. V.P. Georgiev, M.M. Mirza, A.I. Dochioiu, F. Adamu-Lema, S.M. Amoroso, E. Towie, C. Riddet, D.A. Maclaren, A. Asenov, and D.J. Paul, Experimental and simulation study of silicon nanowire transistors using heavily doped channels. IEEE Trans. Nanotechnol. 16, 727 (2017).

    Article  CAS  Google Scholar 

  15. J.-H. Lee, E.-J. Chae, S. Park, and J.-W. Choi, Label-free detection of γ-aminobutyric acid based on silicon nanowire biosensor. Nano Converg. 6, 6 (2019).

    Article  Google Scholar 

  16. C. Vu, Field-effect transistor biosensors for biomedical applications: recent advances and future prospects. Sensors 19, 4214 (2019).

    Article  CAS  Google Scholar 

  17. C. Buzea, Nanomaterials and nanoparticles : sources and toxicity. Biointerphases (2007).

  18. S. Prasad, Nanobiosensors: the future for diagnosis of disease? Nanobiosensors Dis. Diagnosis 3, 1 (2014).

    Google Scholar 

  19. Y. He, C. Fan, and S.T. Lee, Silicon nanostructures for bioapplications. Nano Today 5, 282 (2010).

    Article  CAS  Google Scholar 

  20. A.C.M. de Moraes, and L.T. Kubota, Recent trends in field-effect transistors-based immunosensors. Chemosensors 4, 20 (2016).

    Article  CAS  Google Scholar 

  21. M.N. Omar, A.B. Salleh, H.N. Lim, and A. Ahmad Tajudin, Electrochemical detection of uric acid via uricase-immobilized graphene oxide. Anal. Biochem. 509, 135 (2016).

    Article  CAS  Google Scholar 

  22. J. Y. Hung, Y. B. Manga, Y. J. Chen, H. M. Huang, W. L. Yang, and C. C. Wu, P16 INK4a detection using an ultra-sensitive silicon nanowire field effect transistor. In Proc. - 2018 7th Int. Symp. Next-Generation Electron. ISNE 2018 1 (2018).

  23. S. Singh, B. Raj, and S.K. Vishvakarma, Analytical modeling of split-gate junction-less transistor for a biosensor application. Sens. Bio-Sensing Res. 18, 31 (2018).

    Article  Google Scholar 

  24. B.M. Lowe, K. Sun, I. Zeimpekis, C.K. Skylaris, and N.G. Green, Field-Effect sensors-from PH sensing to biosensing: sensitivity enhancement using streptavidin-biotin as a model system. Analyst 142, 4173 (2017).

    Article  CAS  Google Scholar 

  25. K. Kim, C. Park, T. Rim, M. Meyyappan, and J. S. Lee, Electrical and PH sensing characteristics of si nanowire-based suspended FET biosensors, In 14th IEEE Int. Conf. Nanotechnology, IEEE-NANO 2014 3, 768 (2014).

  26. A. Goel, S. Rewari, S. Verma, and R. S. Gupta, Dielectric modulated triple metal gate all around MOSFET (TMGAA)for DNA bio-molecule detection. In 2018 IEEE Electron Devices Kolkata Conf. 1, 337 (2019).

  27. Y. Chen, R. Ren, H. Pu, X. Guo, J. Chang, G. Zhou, S. Mao, M. Kron, and J. Chen, Field-effect transistor biosensor for rapid detection of ebola antigen. Sci. Rep. 7, 4 (2017).

    Google Scholar 

  28. G. Dhiman, Investigation of junction - less double gate MOSFET with high - k gate - oxide and metal gate layers. Int. J. Innov. Res. Sci. Eng. Technol. 8, 289 (2019).

    Google Scholar 

  29. V. P. Georgiev, A. I. Dochioiu, F. A. Lema, S. Berada, M. M. Mirza, D. J. Paul, and A. Asenov, Variability Study of High Current Junctionless Silicon Nanowire Transistors, in 2017 IEEE 12th Nanotechnology Materials and Devices Conference, NMDC 2017, Vol. 2018–Janua (2018), pp. 87–88.

  30. A. Kumar, M.M. Tripathi, and R. Chaujar, Comprehensive analysis of sub-20 nm black phosphorus based junctionless-recessed channel mosfet for analog/RF applications. Superlattices Microstruct. 116, 171 (2018).

    Article  CAS  Google Scholar 

  31. R. Narang, M. Saxena, and M. Gupta, Investigation of dielectric modulated (DM) double gate (DG) junctionless MOSFETs for application as a biosensors. Superlatt. Microstruct. 85, 557 (2015).

    Article  CAS  Google Scholar 

  32. V. Kumar, R. Gupta, R. Preet, P. Singh, and R. Vaid, Performance analysis of double gate N-FinFET using high-k dielectric materials. Int. J. Innov. Res. Sci. Eng. Technol. 5, 13242 (2016).

    Google Scholar 

  33. B. Kumar, and R. Chaujar, Fin aspect ratio optimization of novel junctionless gate stack gate all around (GS-GAA) FinFET for analog/RF applications. Microelectron. Circ. Syst. Lect. Not. Electr. Eng. 755, 59 (2021).

    Google Scholar 

  34. L. Feilong, L. Yue-yang, L. Ling, Z. Guofu, J. Xiangwei, and L. Jun-wei, Three-dimensional mechanistic modeling of gate leakage current in high- κ MOSFETs. Phys. Rev. Appl. 10, 1 (2020).

    Google Scholar 

  35. M. W. Rony, P. Bhowmik, H. R. Myler, and P. Mondol, Short Channel Effects Suppression in a Dual-Gate Gate-All-around Si Nanowire Junctionless NMOSFET, in Proc. 9th Int. Conf. Electr. Comput. Eng. ICECE 2016 538 (2017).

  36. N. Gupta, and R. Chaujar, Optimization of high-k and gate metal workfunction for improved analog and intermodulation performance of gate stack (GS)-GEWE-SiNW MOSFET. Superlatt. Microstruct. 97, 630 (2016).

    Article  CAS  Google Scholar 

  37. B. Cheng, M. Cao, R. Rao, A. Inani, S. Member, P. Vande Voorde, W.M. Greene, J.M.C. Stork, Z. Yu, S. Member, P.M. Zeitzoff, S. Member, J.C.S. Woo, and S. Member, The impact of high- gate dielectrics and metal gate electrodes on sub-100 Nm MOSFET’s. IEEE Trans. ELECTRON DEVICES 46, 1537 (1999).

    Article  CAS  Google Scholar 

  38. O.A. Books, Work function setting in high-k metal gate devices. INTECH 32, 137–144 (2013).

    Google Scholar 

  39. G. James, S. Joseph, and V. Mathew, The influence of metal gate work function on short channel effects in atomic-layer doped DG MOSFETs. J. Electron Dev. 8, 310 (2010).

    Google Scholar 

  40. S. Piermarini, D. Migliorelli, G. Volpe, R. Massoud, A. Pierantozzi, C. Cortese, and G. Palleschi, Uricase biosensor based on a screen-printed electrode modified with prussian blue for detection of uric acid in human blood serum. Sensors Actuators B Chem. 179, 170 (2013).

    Article  CAS  Google Scholar 

  41. N. Lu, P. Dai, A. Gao, J. Valiaho, P. Kallio, Y. Wang, and T. Li, Label-free and rapid electrical detection of HTSH with CMOS-compatible silicon nanowire transistor arrays. ACS Appl. Mater. Interfaces 6, 20378 (2014).

    Article  CAS  Google Scholar 

  42. V. Narendar, R. Mishra, S. Rai, R.A. Mishra, and C. Engineering, Threshold voltage controlS chemes infinfets. Int. J. VLSI Des. Commun. Syst. 3, 175 (2012).

    Article  Google Scholar 

  43. D. S. Software, ATLAS User ’ s Manual, Vol. II (1998).

  44. D. S. Software, Atlas User ’ s Manual (2016).

  45. J. Sarvas, and J. Spanier, A direct approach to solving the drift-diffusion model equations for use in certain MOSFET devices. Math. Comput. Model. 22, 17 (1995).

    Article  Google Scholar 

  46. S. Selberherr, Deterministic solvers for the boltzmann transport equation (Springer, n.d.).

  47. S. Scaldaferri, G. Curatola, and G. Iannaccone, Direct solution of the boltzmann transport equation and Poisson-Schrödinger equation for nanoscale MOSFETs. IEEE Trans. Electron Devices 54, 2901 (2007).

    Article  CAS  Google Scholar 

  48. T. Ewert, Advanced TCAD simulations and characterization of semiconductor devices (2006).

  49. L. Arivazhagan, D. Nirmal, A. Jarndal, H.F. Huq, S. Chander, S. Bhagyalakshmi, P. Kumar, J. Ajayan, and A. Varghese, Applicability of double channel technique in AlGaN / GaN HEMT for future biosensing applications. Superlattices Microstruct. 160, 107086 (2021).

    Article  CAS  Google Scholar 

  50. T. Goudon, V. Miljanović, and C. Schmeiser, On the shockley-read-hall model: generation-recombination in semiconductors. SIAM J. Appl. Math. 67, 1183 (2007).

    Article  Google Scholar 

  51. N. Thapa, and L. Maurya, Performance advancement of high-K dielectric MOSFET. Int. J. Innov. Adv. Comput. Sci. 3, 98 (2014).

    Google Scholar 

  52. N. Sachdeva, M. Vashishath, and P.K. Bansal, Effect of gate work-function on gate induced drain leakage of MOSFETs. IJCEM Int. J. Comput. Eng. Manag. 21, 11 (2018).

    Google Scholar 

  53. A. Kumar, D. Kaur, M. M. Tripathi, and R. Chaujar, Reliability of high-k gate stack on transparent gate recessed channel (TGRC) MOSFET, In 2017 International Confernce on Microelectronic Devices, Circuits Systems ICMDCS 2017 2017Janua, 1 (2017).

  54. N. Bagga, and S. Dasgupta, Surface potential and drain current analytical model of gate all around triple metal TFET. IEEE Trans. Electron Dev. 64, 606 (2017).

    Article  CAS  Google Scholar 

  55. K.V. Cartwirght, Derivation of the exact transconductance of a FET without calculus. Technol. Interface J. 10, 7 (2009).

    Google Scholar 

  56. H. Im, X.J. Huang, B. Gu, and Y.K. Choi, A dielectric-modulated field-effect transistor for biosensing. Nat. Nanotechnol. 2, 430 (2007).

    Article  CAS  Google Scholar 

  57. E. Rahman, A. Shadman, and Q.D.M. Khosru, Effect of biomolecule position and Fi Ll in factor on sensitivity of a dielectric modulated double gate junctionless MOSFET biosensor. Sens. Bio-Sensing Res. 13, 49 (2017).

    Article  Google Scholar 

  58. W. F. Perina, J. A. Martino, S. Member, P. G. D. Agopian, and S. Member, Intrinsic voltage gain and unit-gain frequency of omega-gate nanowire SOI MOSFETs, in2019 34th Symposium on Microelectronics Technology and Devices, 1 (2019).

  59. J.H. Huang, H. Liu, M.C. Jeng, and P.K. Ko, A physical model for MOSFET output resistance. IEDM Tech. Dig 569, 572 (1992).

    Google Scholar 

Download references

Funding

The study was funded by Ethiopia's Ministry of Higher Education and India's Delhi Technological University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rishu Chaujar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Getnet, M., Chaujar, R. Sensitivity Analysis of Biomolecule Nanocavity Immobilization in a Dielectric Modulated Triple-Hybrid Metal Gate-All-Around Junctionless NWFET Biosensor for Detecting Various Diseases. J. Electron. Mater. 51, 2236–2247 (2022). https://doi.org/10.1007/s11664-022-09466-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09466-1

Keywords

Navigation