Skip to main content

Advertisement

Log in

Modeling and Simulation of CZTS Thin-Film Solar Cell for Efficiency Enhancement

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

CZTS solar cells have been utilized as a replacement for CIGS and CdTe solar cells in thin-film technology. With the better absorption coefficient of this material, it has achieved efficiency higher than 13%. In this work, the performance of a CZTS thin-film solar cell (TFSC) is analyzed by replacing intrinsic ZnO (i-ZnO) with Mg-doped ZnO as window layer material. i-ZnO has good optical and electrical characteristics, but the optical, electrical, and morphological characteristics of Mg-doped ZnO are more promising for its application as window layer material in CZTS thin-film solar cells. The electrical properties of the solar cell are analyzed in the Silvaco TCAD under AM 1.5G illumination. A sharp increase in the performance of the solar cell is observed. Because of the higher transmittance of Mg-doped ZnO, the current density increases. With varying thickness of the window layer and absorber layer, the results in this work reveal maximum efficiency of 19.57%. Variations in the current density (Jsc), open-circuit voltage (Voc), and fill factor (FF %) are also observed. The proposed structure of the thin-film CZTS solar cell shows good performance by enhancing its efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Silva, I. Soares, and O. Afonso, Economic and environmental effects under resource scarcity and substitution between renewable and non-renewable resources. Energy Policy 54, 113–124 (2013). https://doi.org/10.1016/j.enpol.2012.10.069.

    Article  Google Scholar 

  2. P.A. Owusu, and S. Asumadu-Sarkodie, A review of renewable energy sources, sustainability issues and climate change mitigation”. Cogent Eng (2016). https://doi.org/10.1080/23311916.2016.1167990.

    Article  Google Scholar 

  3. R.J. Zedalis, International energy law: Rules governing future exploration, exploitation and use of renewable resources. Int. Energy Law Rules Gov. Futur. Explor. Exploit. Use Renew. Resour (2017). https://doi.org/10.4324/9781315252056.

    Article  Google Scholar 

  4. W. Rowley, and A. Westwood, The need for renewable energy. Pet. Rev. 57, 26–28 (2003).

    Google Scholar 

  5. J.A. Krautkraemer, Nonrenewable Resource Scarcity. J. Econ. Lit. 36, 2065–2107 (1998).

    Google Scholar 

  6. M. R. S. Shaikh 2017 A Review Paper on Electricity Generation from Solar Energy. Int. J. Res. Appl. Sci. Eng. Technol. 5: 1884–1889. https://doi.org/10.22214/ijraset.2017.9272.

  7. C.-F. Hsu, R.-K. Li, H.-Y. Kang, and A.H.I. Lee, A Systematic Evaluation Model for Solar Cell Technologies. Math. Probl. Eng. 2014, 1–16 (2014). https://doi.org/10.1155/2014/542351.

    Article  Google Scholar 

  8. K.D.G.I. Jayawardena, L.J. Rozanski, C.A. Mills, M.J. Beliatis, N.A. Nismy, and S.R.P. Silva, ‘Inorganics-in-organics’: recent developments and outlook for 4G polymer solar cells. Nanoscale 5, 8411–8427 (2013). https://doi.org/10.1039/c3nr02733c.

    Article  CAS  Google Scholar 

  9. S. Saha, A status review on Cu 2 ZnSn(S, Se) 4 -based thin-film Solar cells. Int. J. Photoenergy 2020, 1–13 (2020). https://doi.org/10.1155/2020/3036413.

    Article  CAS  Google Scholar 

  10. A.S. Nazligul, M. Wang, and K.L. Choy, Recent development in earth-abundant kesterite materials and their applications. Sustain (2020). https://doi.org/10.3390/su12125138.

    Article  Google Scholar 

  11. T.P. Dhakal, C. Peng, R. Reid Tobias, R. Dasharathy, and C.R. Westgate, Characterization of a CZTS thin film solar cell grown by sputtering method”. Sol. Energy 100, 23–30 (2014). https://doi.org/10.1016/j.solener.2013.11.035.

    Article  CAS  Google Scholar 

  12. T.D. Lee, and A.U. Ebong, A review of thin film solar cell technologies and challenges. Sustain. Energy Rev. Renew (2017). https://doi.org/10.1016/j.rser.2016.12.028.

    Article  Google Scholar 

  13. A. Haddout, A. Raidou, and M. Fahoume, A review on the numerical modeling of CdS/CZTS-based solar cells. Appl. Phys. A Mater. Sci. Process. 125, 1–16 (2019). https://doi.org/10.1007/s00339-019-2413-3.

    Article  CAS  Google Scholar 

  14. A. Cantas et al., Importance of CdS buffer layer thickness on Cu2ZnSnS4-based solar cell efficiency. J. Phys. D. Appl. Phys. (2018). https://doi.org/10.1088/1361-6463/aac8d3.

    Article  Google Scholar 

  15. A. Gueddim, N. Bouarissa, A. Naas, F. Daoudi, and N. Messikine, Characteristics and optimization of ZnO/CdS/CZTS photovoltaic solar cell. Appl. Phys. A 124, 199 (2018). https://doi.org/10.1007/s00339-018-1626-1.

    Article  CAS  Google Scholar 

  16. National Renewable Energy Laboratory, “Best-Research-Cell-Efficiencies-Rev211011.Pdf.” https://www.nrel.gov/pv/cell-efficiency.html.

  17. A. Cherouana, and R. Labbani, Numerical simulation of CZTS solar cell with silicon back surface field. Mater. Today Proc. 5, 13795–13799 (2018). https://doi.org/10.1016/j.matpr.2018.02.020.

    Article  CAS  Google Scholar 

  18. M.N. Tousif, S. Mohamma, A.A. Ferdous, and M.A. Hoque, Investigation of different materials as buffer layer in CZTS solar cells using SCAPS. J. Clean Energy Technol. 6, 293–296 (2018). https://doi.org/10.18178/JOCET.2018.6.4.477.

    Article  CAS  Google Scholar 

  19. S.R. Meher, L. Balakrishnan, and Z.C. Alex, Analysis of Cu2ZnSnS4/CdS based photovoltaic cell: a numerical simulation approach. Superlattices Microstruct. 100, 703–722 (2016). https://doi.org/10.1016/j.spmi.2016.10.028.

    Article  CAS  Google Scholar 

  20. M. Rouchdi, E. Salmani, B. Fares, N. Hassanain, and A. Mzerd, Synthesis and characteristics of Mg doped ZnO thin films: experimental and ab-initio study. Results Phys. 7, 620–627 (2017). https://doi.org/10.1016/j.rinp.2017.01.023.

    Article  Google Scholar 

  21. J. Husna 2020 The Prospects Of Zinc Oxide (ZnO) For Window Layer Cigs Solar Cells. https://doi.org/10.15405/epsbs.2020.03.03.85.

  22. S. Alhammadi, H. Park, and W.K. Kim, Optimization of intrinsic ZnO thickness in Cu(In, Ga)Se2-based thin film solar cells. Mater. (Basel) 12, 1365 (2019). https://doi.org/10.3390/ma12091365.

    Article  CAS  Google Scholar 

  23. D. S. Software, ATLAS User’s Manual , vol. II: pp. 567–1000, 1998.

Download references

Acknowledgments

This publication is an outcome of the CSIR project (Grant No. 22(0830)/19/EMR-II) of the Govt. of India and the ASEAN-India Collaborative R&D project under the ASEAN-India S&T Development Fund (AISTDF) (Grant No. IMRC/AISTDF/CRD/2018/000068) by DST-SERB, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Lenka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, R., Vallisree, S., Lenka, T.R. et al. Modeling and Simulation of CZTS Thin-Film Solar Cell for Efficiency Enhancement. J. Electron. Mater. 51, 2228–2235 (2022). https://doi.org/10.1007/s11664-022-09449-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09449-2

Keywords

Navigation