Abstract
Photovoltaics based on lead halide perovskite (LHP) materials have attracted interest in recent years due to rapidly increasing performance conversion efficiency (PCE) and low material cost. However, current fabrication methods for perovskite solar cells (PSC) are mainly done under inert environments primarily due to the material’s sensitivity to moisture and oxygen. The development of practical upscaling technology for perovskite solar cells requires a fabrication technique that does not require inert conditions. In this report, we studied the significance of lead source and device architecture on the film quality of LHP when fabricated under ambient atmosphere (relative humidity, RH > 60%). Results suggest that LHP prepared from PbI2 salt has poor material morphology and optical properties regardless of the device architecture adopted. On the other hand, LHP prepared from both PbCl2 and PbAc2 showed superior morphology and optical quality when prepared on mesoporous TiO2 scaffold in comparison to a planar TiO2 layer. By utilizing an ambient-compatible and cost-efficient hole transport layer (HTL) copper(I) thiocyanate (CuSCN), we test the film quality by fabricating a full PSC using PbAc2 as the lead source under ambient conditions, with PCE reaching > 8.0%.
Graphical Abstract
Similar content being viewed by others
References
K. Akihiro, T. Kenjiro, S. Yasuo, and M. Tsutomu, J Am Chem Soc 131, 6050 (2009).
NREL, Photovoltaic Research: Best Research-Cell Efficiency Chart, National Renewable Energy Laboratory report (2021). https://www.nrel.gov/pv/cell-efficiency.html. Accessed 21 Jan 2022.
H. Yuan, E. Debroye, K. Janssen, H. Naiki, C. Steuwe, G. Lu, M. Moris, E. Orgiu, H. Uji-I, F. De Schryver, P. Samorì, J. Hofkens, and M. Roeffaers, J. Phys. Chem. Lett. 7, 561 (2016).
W. Nie, J.C. Blancon, A.J. Neukirch, K. Appavoo, H. Tsai, M. Chhowalla, M.A. Alam, M.Y. Sfeir, C. Katan, J. Even, S. Tretiak, J.J. Crochet, G. Gupta, and A.D. Mohite, Nat Commun 7, 11574 (2016).
G. Niu, W. Li, J. Li, X. Liang, L. Wang, L. D’Olieslaeger, A. Ethirajan, J. Berbeeck, J. Manca, E. Mosconi, F.D. Angelis, H.-G. Boyen, D.S. Ginger, R.H. Friend, and H.J. Snaith, RSC Adv. 7, 17473 (2017).
A. Dualeh, N. Tétreault, T. Moehl, P. Gao, M.K. Nazeeruddin, and M. Grätzel, Adv. Funct. Mater. 24, 3250 (2014).
B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D’Haen, L. D’Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. De Angelis, and H.G. Boyen, Adv. Energy Mater. 5, 1500477 (2015).
T. A. Berhe, W.-N. Su, C.-H. Chen, C.-J. Pan, J.-H. Cheng, H.-M. Chen, M.-C. Tsai, L.-Y. Chen, A. A. Dubale, and B.-J. Hwang, Energy Environ. Sci. 9, Advance Article (2016)
Q. Dong, F. Liu, M.K. Wong, H.W. Tam, A.B. Djurišić, A. Ng, C. Surya, W.K. Chan, and A.M.C. Ng, Chemsuschem 9, 2518 (2016).
J.R. Vicente, and J. Chen, J. Phys. Chem. Lett. 11, 1802 (2020).
J.A. Christians, P.A. Miranda Herrera, and P.V. Kamat, J. Am. Chem. Soc. 137, 1530 (2015).
A.M.A. Leguy, Y. Hu, M. Campoy-Quiles, M.I. Alonso, O.J. Weber, P. Azarhoosh, M. van Schilfgaarde, M.T. Weller, T. Bein, J. Nelson, P. Docampo, and P.R.F. Barnes, Chem. Mater. 27, 3397 (2015).
G. Niu, X. Guo, and L. Wang, J. Mater. Chem. A 3, 8970 (2015).
W. Huang, J.S. Manser, P.V. Kamat, and S. Ptasinska, Chem. Mater. 28, 303 (2016).
R. Sheng, X. Wen, S. Huang, X. Hao, S. Chen, Y. Jiang, X. Deng, M.A. Green, and A. Ho-Baillie, Nanoscale 8, 1926 (2016).
G. E. Eperon, S. N. Habisreutinger, T. Leijtens, B. J. Bruijnaers, J. J. Van, R. A. J. Janssen, A. Petrozza, and H. J. Snaith, 9380 (2015)
Y. Yu, S. Yang, L. Lei, Q. Cao, J. Shao, S. Zhang, and Y. Liu, ACS Appl. Mater. Interfaces acsami. 6b14270 (2017)
S. Ye, H. Rao, Z. Zhao, L. Zhang, H. Bao, W. Sun, Y. Li, F. Gu, J. Wang, Z. Liu, Z. Bian, and C. Huang, J. Am. Chem. Soc. jacs. 7b01439 (2017)
S.S. Shin, E.J. Yeom, W.S. Yang, S. Hur, M.G. Kim, J. Im, J. Seo, J.H. Noh, and S.I. Seok, and S.I. Seok, Science 356, 167 (2017).
J.R. Vicente, A. Rafiei Miandashti, K.W.E. Sy Piecco, J.R. Pyle, M.E. Kordesch, and J. Chen, ACS. Appl Mater. Interfaces 11, 18034 (2019).
B.A. de Carvalho, S. Kavadiya, S. Huang, D.M. Niedzwiedzki, P. Biswas, B.A. de Carvalho, S. Kavadiya, S. Huang, D.M. Niedzwiedzki, and P. Biswas, IEEE J. Photovoltaics 7, 1 (2016).
H. Gao, C. Bao, F. Li, T. Yu, J. Yang, W. Zhu, X. Zhou, G. Fu, Z. Zou, and A.C.S. Appl, Mater. Interfaces 7, 9110 (2015).
K. Zhang, Z. Wang, G. Wang, J. Wang, Y. Li, W. Qian, S. Zheng, S. Xiao, and S. Yang, Nat. Commun. 11, 1006 (2020).
J. Troughton, K. Hooper, and T.M. Watson, Nano Energy 39, 60 (2017).
S.-H. Huang, C.-K. Guan, P.-H. Lee, H.-C. Huang, C.-F. Li, Y.-C. Huang, and W.-F. Su, Adv. Energy Mater. 10, 2001567 (2020).
Z. Yang, C.C. Chueh, F. Zuo, J.H. Kim, P.W. Liang, and A.K.Y. Jen, Adv. Energy Mater. 5, 1 (2015).
J. Su, H. Cai, J. Yang, X. Ye, R. Han, J. Ni, J. Li, J. Zhang, and A.C.S. Appl, Mater. Interfaces 12, 3531 (2020).
Y. Rong, X. Hou, Y. Hu, A. Mei, L. Liu, P. Wang, and H. Han, Nat. Commun. 8, 14555 (2017).
H. Zhang, J. Cheng, F. Lin, H. He, J. Mao, K.S. Wong, A.K.Y. Jen, and W.C.H. Choy, ACS Nano 10, 1503 (2016).
H. Tan, A. Jain, O. Voznyy, X. Lan, F.P. García de Arquer, J.Z. Fan, R. Quintero-Bermudez, M. Yuan, B. Zhang, Y.Y. Zhao, F. Fan, P. Li, L.N. Quan, Y.Y. Zhao, Z.-H. Lu, Z. Yang, S. Hoogland, and E.H. Sargent, Science 355, 722 (2017).
L. Huang, Z. Hu, J. Xu, X. Sun, Y. Du, J. Ni, H. Cai, J. Li, and J. Zhang, Sol. Energy Mater. Sol. Cells 149, 1 (2016).
S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, Z. Liu, and C. Huang, Nano Lett. 15, 3723 (2015).
J. Chang, H. Zhu, B. Li, F.H. Isikgor, Y. Hao, Q. Xu, and J. Ouyang, J. Mater. Chem. A 4, 887 (2016).
X. Guo, J. Su, Z. Lin, X. Wang, Q. Wang, Z. Zeng, J. Chang, and Y. Hao, IScience 24, 102276 (2021).
L. Zhou, J. Su, Z. Lin, X. Guo, J. Ma, T. Li, J. Zhang, J. Chang, and Y. Hao, Research 2021, 9836752 (2021).
J. Chang, H. Zhu, J. Xiao, F.H. Isikgor, Z. Lin, Y. Hao, K. Zeng, Q.-H. Xu, and J. Ouyang, J. Mater. Chem. A 4, 7943 (2016).
J. Chang, Z. Lin, H. Zhu, F.H. Isikgor, Q.-H. Xu, C. Zhang, Y. Hao, and J. Ouyang, J. Mater. Chem. A 4, 16546 (2016).
U. Wurfel, A. Cuevas, and P. Wurfel, IEEE J. Photovoltaics 5, 461 (2015).
A. Hernández-Granados, A.N. Corpus-Mendoza, P.M. Moreno-Romero, C.A. Rodríguez-Castañeda, J.E. Pascoe-Sussoni, O.A. Castelo-González, E.C. Menchaca-Campos, J. Escorcia-García, and H. Hu, Opt. Mater. (Amst). 88, 695 (2019).
M.F. Mohamad Noh, C.H. Teh, R. Daik, E.L. Lim, C.C. Yap, M.A. Ibrahim, N. Ahmad Ludin, A.R. Bin, M. Yusoff, J. Jang, and M.A. Mat Teridi, J. Mater. Chem. C 6, 682 (2018).
A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Gratzel, and H. Han, Science 345, 295 (2014).
Y. Yang, K. Ri, A. Mei, L. Liu, M. Hu, T. Liu, X. Li, and H. Han, J. Mater. Chem. A 3, 9103 (2015).
Y. Yang, N.D. Pham, D. Yao, H. Zhu, P. Yarlagadda, and H. Wang, Chinese Chem. Lett. 29, 1242 (2018).
Z. Shariatinia, Renew. Sustain. Energy Rev. 119, 109608 (2020).
N. Arora, M.I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S.M. Zakeeruddin, and M. Grätzel, Science 358, 768 (2017).
M. Kim, A. Alfano, G. Perotto, M. Serri, N. Dengo, A. Mezzetti, S. Gross, M. Prato, M. Salerno, A. Rizzo, R. Sorrentino, E. Cescon, G. Meneghesso, F. Di Fonzo, A. Petrozza, T. Gatti, and F. Lamberti, Commun. Mater. 2, 1 (2021).
Y. Xu, Y. Tian, M. Hou, Y. Wu, Y. Ding, Y. Zhao, X. Zhang, and G. Hou, J. Phys. Chem. C 124, 27977 (2020).
I.M. Asuo, S. Bouzidi, I. Ka, F. Rosei, A. Pignolet, R. Nechache, and S.G. Cloutier, Energy Technol. 9, 1 (2021).
A. Kumar, and S. Singh, J. Electron. Mater. 49, 5840 (2020).
J. Qing, H.-T. Chandran, H.-T. Xue, Z.-Q. Guan, T.-L. Liu, S.-W. Tsang, M.-F. Lo, and C.-S. Lee, Org. Electron. 27, 12 (2015).
F.K. Aldibaja, L. Badia, E. Mas-Marzá, R.S. Sánchez, E.M. Barea, and I. Mora-Sero, J. Mater. Chem. A 3, 9194 (2015).
C. Ran, Y. Wang, W. Gao, Y. Xia, Y. Chen, and W. Huang, Sol. RRL 5, 2100665 (2021).
G. Murugadoss, R. Thangamuthu, and S.M. Senthil Kumar, Sol. Energy Mater. Sol. Cells 164, 56 (2017).
N. Ahn, D.Y. Son, I.H. Jang, S.M. Kang, M. Choi, and N.G. Park, J. Am. Chem. Soc. 137, 8696 (2015).
M.F. Mohamad Noh, N.A. Arzaee, I.N. Mumthas, N.A. Mohamed, S.N.F. Mohd Nasir, J. Safaei, A.R. Bin, M. Yusoff, M.K. Nazeeruddin, and M.A. Mat Teridi, J. Mater. Chem. 8, 10481–10518 (2014).
J.W. Lee, H.S. Kim, and N.G. Park, Acc. Chem. Res. 49, 311 (2016).
K. Yan, M. Long, T. Zhang, Z. Wei, H. Chen, S. Yang, and J. Xu, J. Am. Chem. Soc. 137, 4460 (2015).
W. Zhang, M. Saliba, D.T. Moore, S.K. Pathak, M.T. Horantner, T. Stergiopoulos, S.D. Stranks, G.E. Eperon, J.A. Alexander-Webber, A. Abate, A. Sadhanala, S. Yao, Y. Chen, R.H. Friend, L.A. Estroff, U. Wiesner, and H.J. Snaith, Nat. Commun. 6, 6142 (2015).
A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M.M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, H. Han, M. Gratzel, and H. Han, Science 345, 295 (2014).
A. Makkaramkott, R. Mukherjee, S. Avasthi, and A. Subramanian, J. Electron. Mater. 50, 1535 (2021).
D. Wang, Q. Chen, H. Mo, J. Jacobs, A. Thomas, and Z. Liu, Mater. Adv. 1, 2057 (2020).
J. Yin, J. Cao, X. He, S. Yuan, S. Sun, J. Li, N. Zheng, and L. Lin, J. Mater. Chem. A 3, 16860 (2015).
Acknowledgments
We thank the Ohio University startup fund for financial support.
Funding
There is no funding for this manuscript.
Author information
Authors and Affiliations
Contributions
Conceptualization, JRV and JC; methodology, JRV and SK; resources, JC, JW, and SK; data curation, JRV; writing—original draft preparation, JRV, JW, and JC; writing—review and editing, JRV, JW, SK, and JC; supervision, JC and JW; funding acquisition, JC. All authors have read and agreed to the published version of the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Vicente, J.R., Jadwisienczak, W.M., Kaya, S. et al. Influence of Lead Source on the Film Morphology of Perovskites Spin-Coated on Planar and Mesoporous Architectures under Ambient Conditions. J. Electron. Mater. 51, 1623–1631 (2022). https://doi.org/10.1007/s11664-022-09429-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11664-022-09429-6