Skip to main content

Advertisement

Log in

Influence of Lead Source on the Film Morphology of Perovskites Spin-Coated on Planar and Mesoporous Architectures under Ambient Conditions

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Photovoltaics based on lead halide perovskite (LHP) materials have attracted interest in recent years due to rapidly increasing performance conversion efficiency (PCE) and low material cost. However, current fabrication methods for perovskite solar cells (PSC) are mainly done under inert environments primarily due to the material’s sensitivity to moisture and oxygen. The development of practical upscaling technology for perovskite solar cells requires a fabrication technique that does not require inert conditions. In this report, we studied the significance of lead source and device architecture on the film quality of LHP when fabricated under ambient atmosphere (relative humidity, RH > 60%). Results suggest that LHP prepared from PbI2 salt has poor material morphology and optical properties regardless of the device architecture adopted. On the other hand, LHP prepared from both PbCl2 and PbAc2 showed superior morphology and optical quality when prepared on mesoporous TiO2 scaffold in comparison to a planar TiO2 layer. By utilizing an ambient-compatible and cost-efficient hole transport layer (HTL) copper(I) thiocyanate (CuSCN), we test the film quality by fabricating a full PSC using PbAc2 as the lead source under ambient conditions, with PCE reaching > 8.0%.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. Akihiro, T. Kenjiro, S. Yasuo, and M. Tsutomu, J Am Chem Soc 131, 6050 (2009).

    Article  Google Scholar 

  2. NREL, Photovoltaic Research: Best Research-Cell Efficiency Chart, National Renewable Energy Laboratory report (2021). https://www.nrel.gov/pv/cell-efficiency.html. Accessed 21 Jan 2022.

  3. H. Yuan, E. Debroye, K. Janssen, H. Naiki, C. Steuwe, G. Lu, M. Moris, E. Orgiu, H. Uji-I, F. De Schryver, P. Samorì, J. Hofkens, and M. Roeffaers, J. Phys. Chem. Lett. 7, 561 (2016).

    Article  CAS  Google Scholar 

  4. W. Nie, J.C. Blancon, A.J. Neukirch, K. Appavoo, H. Tsai, M. Chhowalla, M.A. Alam, M.Y. Sfeir, C. Katan, J. Even, S. Tretiak, J.J. Crochet, G. Gupta, and A.D. Mohite, Nat Commun 7, 11574 (2016).

    Article  CAS  Google Scholar 

  5. G. Niu, W. Li, J. Li, X. Liang, L. Wang, L. D’Olieslaeger, A. Ethirajan, J. Berbeeck, J. Manca, E. Mosconi, F.D. Angelis, H.-G. Boyen, D.S. Ginger, R.H. Friend, and H.J. Snaith, RSC Adv. 7, 17473 (2017).

    Article  CAS  Google Scholar 

  6. A. Dualeh, N. Tétreault, T. Moehl, P. Gao, M.K. Nazeeruddin, and M. Grätzel, Adv. Funct. Mater. 24, 3250 (2014).

    Article  CAS  Google Scholar 

  7. B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D’Haen, L. D’Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. De Angelis, and H.G. Boyen, Adv. Energy Mater. 5, 1500477 (2015).

    Article  Google Scholar 

  8. T. A. Berhe, W.-N. Su, C.-H. Chen, C.-J. Pan, J.-H. Cheng, H.-M. Chen, M.-C. Tsai, L.-Y. Chen, A. A. Dubale, and B.-J. Hwang, Energy Environ. Sci. 9, Advance Article (2016)

  9. Q. Dong, F. Liu, M.K. Wong, H.W. Tam, A.B. Djurišić, A. Ng, C. Surya, W.K. Chan, and A.M.C. Ng, Chemsuschem 9, 2518 (2016).

    Article  CAS  Google Scholar 

  10. J.R. Vicente, and J. Chen, J. Phys. Chem. Lett. 11, 1802 (2020).

    Article  CAS  Google Scholar 

  11. J.A. Christians, P.A. Miranda Herrera, and P.V. Kamat, J. Am. Chem. Soc. 137, 1530 (2015).

    Article  CAS  Google Scholar 

  12. A.M.A. Leguy, Y. Hu, M. Campoy-Quiles, M.I. Alonso, O.J. Weber, P. Azarhoosh, M. van Schilfgaarde, M.T. Weller, T. Bein, J. Nelson, P. Docampo, and P.R.F. Barnes, Chem. Mater. 27, 3397 (2015).

    Article  CAS  Google Scholar 

  13. G. Niu, X. Guo, and L. Wang, J. Mater. Chem. A 3, 8970 (2015).

    Article  CAS  Google Scholar 

  14. W. Huang, J.S. Manser, P.V. Kamat, and S. Ptasinska, Chem. Mater. 28, 303 (2016).

    Article  CAS  Google Scholar 

  15. R. Sheng, X. Wen, S. Huang, X. Hao, S. Chen, Y. Jiang, X. Deng, M.A. Green, and A. Ho-Baillie, Nanoscale 8, 1926 (2016).

    Article  CAS  Google Scholar 

  16. G. E. Eperon, S. N. Habisreutinger, T. Leijtens, B. J. Bruijnaers, J. J. Van, R. A. J. Janssen, A. Petrozza, and H. J. Snaith, 9380 (2015)

  17. Y. Yu, S. Yang, L. Lei, Q. Cao, J. Shao, S. Zhang, and Y. Liu, ACS Appl. Mater. Interfaces acsami. 6b14270 (2017)

  18. S. Ye, H. Rao, Z. Zhao, L. Zhang, H. Bao, W. Sun, Y. Li, F. Gu, J. Wang, Z. Liu, Z. Bian, and C. Huang, J. Am. Chem. Soc. jacs. 7b01439 (2017)

  19. S.S. Shin, E.J. Yeom, W.S. Yang, S. Hur, M.G. Kim, J. Im, J. Seo, J.H. Noh, and S.I. Seok, and S.I. Seok, Science 356, 167 (2017).

    CAS  Google Scholar 

  20. J.R. Vicente, A. Rafiei Miandashti, K.W.E. Sy Piecco, J.R. Pyle, M.E. Kordesch, and J. Chen, ACS. Appl Mater. Interfaces 11, 18034 (2019).

    Article  CAS  Google Scholar 

  21. B.A. de Carvalho, S. Kavadiya, S. Huang, D.M. Niedzwiedzki, P. Biswas, B.A. de Carvalho, S. Kavadiya, S. Huang, D.M. Niedzwiedzki, and P. Biswas, IEEE J. Photovoltaics 7, 1 (2016).

    Google Scholar 

  22. H. Gao, C. Bao, F. Li, T. Yu, J. Yang, W. Zhu, X. Zhou, G. Fu, Z. Zou, and A.C.S. Appl, Mater. Interfaces 7, 9110 (2015).

    Article  CAS  Google Scholar 

  23. K. Zhang, Z. Wang, G. Wang, J. Wang, Y. Li, W. Qian, S. Zheng, S. Xiao, and S. Yang, Nat. Commun. 11, 1006 (2020).

    Article  CAS  Google Scholar 

  24. J. Troughton, K. Hooper, and T.M. Watson, Nano Energy 39, 60 (2017).

    Article  CAS  Google Scholar 

  25. S.-H. Huang, C.-K. Guan, P.-H. Lee, H.-C. Huang, C.-F. Li, Y.-C. Huang, and W.-F. Su, Adv. Energy Mater. 10, 2001567 (2020).

    Article  CAS  Google Scholar 

  26. Z. Yang, C.C. Chueh, F. Zuo, J.H. Kim, P.W. Liang, and A.K.Y. Jen, Adv. Energy Mater. 5, 1 (2015).

    Google Scholar 

  27. J. Su, H. Cai, J. Yang, X. Ye, R. Han, J. Ni, J. Li, J. Zhang, and A.C.S. Appl, Mater. Interfaces 12, 3531 (2020).

    Article  CAS  Google Scholar 

  28. Y. Rong, X. Hou, Y. Hu, A. Mei, L. Liu, P. Wang, and H. Han, Nat. Commun. 8, 14555 (2017).

    Article  Google Scholar 

  29. H. Zhang, J. Cheng, F. Lin, H. He, J. Mao, K.S. Wong, A.K.Y. Jen, and W.C.H. Choy, ACS Nano 10, 1503 (2016).

    Article  CAS  Google Scholar 

  30. H. Tan, A. Jain, O. Voznyy, X. Lan, F.P. García de Arquer, J.Z. Fan, R. Quintero-Bermudez, M. Yuan, B. Zhang, Y.Y. Zhao, F. Fan, P. Li, L.N. Quan, Y.Y. Zhao, Z.-H. Lu, Z. Yang, S. Hoogland, and E.H. Sargent, Science 355, 722 (2017).

    Article  CAS  Google Scholar 

  31. L. Huang, Z. Hu, J. Xu, X. Sun, Y. Du, J. Ni, H. Cai, J. Li, and J. Zhang, Sol. Energy Mater. Sol. Cells 149, 1 (2016).

    Article  CAS  Google Scholar 

  32. S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, Z. Liu, and C. Huang, Nano Lett. 15, 3723 (2015).

    Article  CAS  Google Scholar 

  33. J. Chang, H. Zhu, B. Li, F.H. Isikgor, Y. Hao, Q. Xu, and J. Ouyang, J. Mater. Chem. A 4, 887 (2016).

    Article  CAS  Google Scholar 

  34. X. Guo, J. Su, Z. Lin, X. Wang, Q. Wang, Z. Zeng, J. Chang, and Y. Hao, IScience 24, 102276 (2021).

    Article  CAS  Google Scholar 

  35. L. Zhou, J. Su, Z. Lin, X. Guo, J. Ma, T. Li, J. Zhang, J. Chang, and Y. Hao, Research 2021, 9836752 (2021).

    CAS  Google Scholar 

  36. J. Chang, H. Zhu, J. Xiao, F.H. Isikgor, Z. Lin, Y. Hao, K. Zeng, Q.-H. Xu, and J. Ouyang, J. Mater. Chem. A 4, 7943 (2016).

    Article  CAS  Google Scholar 

  37. J. Chang, Z. Lin, H. Zhu, F.H. Isikgor, Q.-H. Xu, C. Zhang, Y. Hao, and J. Ouyang, J. Mater. Chem. A 4, 16546 (2016).

    Article  CAS  Google Scholar 

  38. U. Wurfel, A. Cuevas, and P. Wurfel, IEEE J. Photovoltaics 5, 461 (2015).

    Article  Google Scholar 

  39. A. Hernández-Granados, A.N. Corpus-Mendoza, P.M. Moreno-Romero, C.A. Rodríguez-Castañeda, J.E. Pascoe-Sussoni, O.A. Castelo-González, E.C. Menchaca-Campos, J. Escorcia-García, and H. Hu, Opt. Mater. (Amst). 88, 695 (2019).

    Article  Google Scholar 

  40. M.F. Mohamad Noh, C.H. Teh, R. Daik, E.L. Lim, C.C. Yap, M.A. Ibrahim, N. Ahmad Ludin, A.R. Bin, M. Yusoff, J. Jang, and M.A. Mat Teridi, J. Mater. Chem. C 6, 682 (2018).

    Article  CAS  Google Scholar 

  41. A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Gratzel, and H. Han, Science 345, 295 (2014).

    Article  CAS  Google Scholar 

  42. Y. Yang, K. Ri, A. Mei, L. Liu, M. Hu, T. Liu, X. Li, and H. Han, J. Mater. Chem. A 3, 9103 (2015).

    Article  CAS  Google Scholar 

  43. Y. Yang, N.D. Pham, D. Yao, H. Zhu, P. Yarlagadda, and H. Wang, Chinese Chem. Lett. 29, 1242 (2018).

    Article  CAS  Google Scholar 

  44. Z. Shariatinia, Renew. Sustain. Energy Rev. 119, 109608 (2020).

    Article  CAS  Google Scholar 

  45. N. Arora, M.I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S.M. Zakeeruddin, and M. Grätzel, Science 358, 768 (2017).

    Article  CAS  Google Scholar 

  46. M. Kim, A. Alfano, G. Perotto, M. Serri, N. Dengo, A. Mezzetti, S. Gross, M. Prato, M. Salerno, A. Rizzo, R. Sorrentino, E. Cescon, G. Meneghesso, F. Di Fonzo, A. Petrozza, T. Gatti, and F. Lamberti, Commun. Mater. 2, 1 (2021).

    Article  Google Scholar 

  47. Y. Xu, Y. Tian, M. Hou, Y. Wu, Y. Ding, Y. Zhao, X. Zhang, and G. Hou, J. Phys. Chem. C 124, 27977 (2020).

    Article  CAS  Google Scholar 

  48. I.M. Asuo, S. Bouzidi, I. Ka, F. Rosei, A. Pignolet, R. Nechache, and S.G. Cloutier, Energy Technol. 9, 1 (2021).

    Article  Google Scholar 

  49. A. Kumar, and S. Singh, J. Electron. Mater. 49, 5840 (2020).

    Article  CAS  Google Scholar 

  50. J. Qing, H.-T. Chandran, H.-T. Xue, Z.-Q. Guan, T.-L. Liu, S.-W. Tsang, M.-F. Lo, and C.-S. Lee, Org. Electron. 27, 12 (2015).

    Article  CAS  Google Scholar 

  51. F.K. Aldibaja, L. Badia, E. Mas-Marzá, R.S. Sánchez, E.M. Barea, and I. Mora-Sero, J. Mater. Chem. A 3, 9194 (2015).

    Article  CAS  Google Scholar 

  52. C. Ran, Y. Wang, W. Gao, Y. Xia, Y. Chen, and W. Huang, Sol. RRL 5, 2100665 (2021).

    Article  CAS  Google Scholar 

  53. G. Murugadoss, R. Thangamuthu, and S.M. Senthil Kumar, Sol. Energy Mater. Sol. Cells 164, 56 (2017).

    Article  CAS  Google Scholar 

  54. N. Ahn, D.Y. Son, I.H. Jang, S.M. Kang, M. Choi, and N.G. Park, J. Am. Chem. Soc. 137, 8696 (2015).

    Article  CAS  Google Scholar 

  55. M.F. Mohamad Noh, N.A. Arzaee, I.N. Mumthas, N.A. Mohamed, S.N.F. Mohd Nasir, J. Safaei, A.R. Bin, M. Yusoff, M.K. Nazeeruddin, and M.A. Mat Teridi, J. Mater. Chem. 8, 10481–10518 (2014).

    Article  Google Scholar 

  56. J.W. Lee, H.S. Kim, and N.G. Park, Acc. Chem. Res. 49, 311 (2016).

    Article  Google Scholar 

  57. K. Yan, M. Long, T. Zhang, Z. Wei, H. Chen, S. Yang, and J. Xu, J. Am. Chem. Soc. 137, 4460 (2015).

    Article  CAS  Google Scholar 

  58. W. Zhang, M. Saliba, D.T. Moore, S.K. Pathak, M.T. Horantner, T. Stergiopoulos, S.D. Stranks, G.E. Eperon, J.A. Alexander-Webber, A. Abate, A. Sadhanala, S. Yao, Y. Chen, R.H. Friend, L.A. Estroff, U. Wiesner, and H.J. Snaith, Nat. Commun. 6, 6142 (2015).

    Article  CAS  Google Scholar 

  59. A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M.M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, H. Han, M. Gratzel, and H. Han, Science 345, 295 (2014).

    Article  CAS  Google Scholar 

  60. A. Makkaramkott, R. Mukherjee, S. Avasthi, and A. Subramanian, J. Electron. Mater. 50, 1535 (2021).

    Article  CAS  Google Scholar 

  61. D. Wang, Q. Chen, H. Mo, J. Jacobs, A. Thomas, and Z. Liu, Mater. Adv. 1, 2057 (2020).

    Article  CAS  Google Scholar 

  62. J. Yin, J. Cao, X. He, S. Yuan, S. Sun, J. Li, N. Zheng, and L. Lin, J. Mater. Chem. A 3, 16860 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Ohio University startup fund for financial support.

Funding

There is no funding for this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, JRV and JC; methodology, JRV and SK; resources, JC, JW, and SK; data curation, JRV; writing—original draft preparation, JRV, JW, and JC; writing—review and editing, JRV, JW, SK, and JC; supervision, JC and JW; funding acquisition, JC. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Jixin Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 393 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vicente, J.R., Jadwisienczak, W.M., Kaya, S. et al. Influence of Lead Source on the Film Morphology of Perovskites Spin-Coated on Planar and Mesoporous Architectures under Ambient Conditions. J. Electron. Mater. 51, 1623–1631 (2022). https://doi.org/10.1007/s11664-022-09429-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09429-6

Keywords

Navigation