Skip to main content
Log in

Thermodynamic Limits to HgTe Quantum Dot Infrared Detector Performance

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The potential detectivity limits of HgTe nanocrystal quantum dot photodetectors are examined using a microscopic detailed balance model of carrier generation and recombination. We find that even with the fast nonradiative recombination typical of present materials, HgTe quantum dot solids can support equilibrium detectivities which are close to those of Auger-limited HgCdTe crystals. It is further shown that if such nonradiative recombination can be reduced so that Auger-limited performance is achieved, the confluence of fast radiative and slow Auger recombination should enable large upper limits on achievable detectivities when compared to HgCdTe. These results are discussed in the context of future advances in infrared photodetection with nanocrystal quantum dots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. W.E. Tennant, “Rule 07” revisited: still a good heuristic predictor of p/n HgCdTe photodiode performance? J. Electron. Mater. 39, 1030 (2010).

    Article  CAS  Google Scholar 

  2. N. Baier, O. Gravrand, C. Lobre, O. Boulade, A. Kerlain, and N. Péré-Laperne, HgCdTe diode dark current modeling: rule 07 revisited for LW and VLW. J. Electron. Mater. 48, 5233 (2019).

    Article  CAS  Google Scholar 

  3. A. Rogalski, Infrared Detectors, 2nd ed., (Boca Raton: CRC, 2010).

    Google Scholar 

  4. D. Lee, M. Carmody, E. Piquette, P. Dreiske, A. Chen, A. Yulius, D. Edwall, S. Bhargava, M. Zandian, and W.E. Tennant, High-operating temperature HgCdTe: a vision for the near future. J. Electron. Mater. 45, 4587 (2016).

    Article  CAS  Google Scholar 

  5. D.L. Lee, P. Dreiske, J. Ellsworth, R. Cottier, A. Chen, S. Tallaricao, A. Yulius, M. Carmody, E. Piquette, M. Zandian, and S. Douglas, Law 19: the ultimate photodiode performance metric. Infrared Technol. Appl. XLVI, 114040X (2020).

    Google Scholar 

  6. B.V. Olson, C.H. Grein, J.K. Kim, E.A. Kadlec, J.F. Klem, S.D. Hawkins, and E.A. Shaner, Auger recombination in long-wave infrared InAs/InAsSb type-II superlattices. Appl. Phys. Lett. 107, 261104 (2015).

    Article  Google Scholar 

  7. B.V. Olson, E.A. Shaner, J.K. Kim, J.F. Klem, S.D. Hawkins, M.E. Flatté, and T.F. Boggess, Identification of dominant recombination mechanisms in narrow-bandgap InAs/InAsSb type-II superlattices and InAsSb alloys. Appl. Phys. Lett. 103, 052106 (2013).

    Article  Google Scholar 

  8. I. Ramiro, O. Özdemir, S. Christodoulou, S. Gupta, M. Dalmases, I. Torre, and G. Konstantatos, Mid- and long-wave infrared optoelectronics via intraband transitions in PbS colloidal quantum dots. Nano Lett. 20, 1003 (2020).

    Article  CAS  Google Scholar 

  9. M. Ackerman, X. Tang, and P. Guyot-Sionnest, Fast and sensitive colloidal quantum dot mid-wave infrared photodetectors. ACS Nano 12, 7264 (2018).

    Article  CAS  Google Scholar 

  10. X. Tang, M.M. Ackerman, and P. Guyot-Sionnest, Thermal imaging with plasmon resonance enhanced HgTe colloidal quantum dot photovoltaic devices. ACS Nano 12, 7362 (2018).

    Article  CAS  Google Scholar 

  11. X. Tang, M.M. Ackerman, M. Chen, and P. Guyot-Sionnest, Dual-band infrared imaging using stacked colloidal quantum dot photodiodes. Nat. Photon. 13, 277 (2019).

    Article  CAS  Google Scholar 

  12. X. Tang, M.M. Ackerman, and P. Guyot-Sionnest, Acquisition of hyperspectral data with colloidal quantum dots. Laser Photon. Rev. 13, 1900165 (2019).

    Article  CAS  Google Scholar 

  13. X. Tang, M. Chen, M.M. Ackerman, C. Melnychuk, and P. Guyot-Sionnest, Direct imprinting of quasi-3D nanophotonic structures into colloidal quantum-dot devices. Adv. Mater. 32, 1906590 (2020).

    Article  CAS  Google Scholar 

  14. Q. Hao, X. Tang, Y. Cheng, and Y. Hu, Development of flexible and curved infrared detectors with HgTe colloidal quantum dots. Infrared Phys. Technol. 108, 103344 (2020).

    Article  CAS  Google Scholar 

  15. X. Tang, M.M. Ackerman, G. Shen, and P. Guyot-Sionnest, Towards infrared electronic eyes: flexible colloidal quantum dot photovoltaic detectors enhanced by resonant cavity. Small 15, 1804920 (2019).

    Article  Google Scholar 

  16. C. Livache, B. Martinez, N. Goubet, J. Ramade, and E. Lhuillier, Road map for nanocrystal based infrared photodetectors. Front. Chem. 6, 575 (2018).

    Article  CAS  Google Scholar 

  17. P. Martyniuk, S. Krishna, and A. Rogalski, Assessment of quantum dot infrared photodetectors for high temperature operation. J. Appl. Phys. 104, 034314 (2008).

    Article  Google Scholar 

  18. J. Phillips, Evaluation of the fundamental properties of quantum dot infrared detectors. J. Appl. Phys. 91, 4590 (2002).

    Article  CAS  Google Scholar 

  19. M.H. Hudson, M. Chen, V. Kamysbayev, E.M. Janke, X. Lan, G. Allan, C. Delerue, B. Lee, P. Guyot-Sionnest, and D.V. Talapin, Conduction band fine structure in colloidal HgTe quantum dots. ACS Nano 12, 9397 (2018).

    Article  CAS  Google Scholar 

  20. S. Keuleyan, J. Kohler, and P. Guyot-Sionnest, Photoluminescence of mid-infrared HgTe colloidal quantum dots. J. Phys. Chem. C 118, 2749 (2014).

    Article  CAS  Google Scholar 

  21. M. Chen, X. Lan, X. Tang, Y. Wang, M.H. Hudson, D.V. Talapin, and P. Guyot-Sionnest, High carrier mobility in HgTe quantum dot solids improves mid-IR photodetectors. ACS Photon. 6, 2358 (2019).

    Article  Google Scholar 

  22. A. Stavrinadis, and G. Konstantatos, Strategies for the controlled electronic doping of colloidal quantum dot solids. ChemPhysChem 17, 632 (2016).

    Article  CAS  Google Scholar 

  23. M. Chen, and P. Guyot-Sionnest, Reversible electrochemistry of mercury chalcogenide colloidal quantum dot films. ACS Nano 11, 4165 (2017).

    Article  CAS  Google Scholar 

  24. G. Shen, M. Chen, and P. Guyot-Sionnest, Synthesis of nonaggregating HgTe colloidal quantum dots and the emergence of air-stable n-doping supporting information. J. Phys. Chem. Lett. 8, 2224 (2017).

    Article  CAS  Google Scholar 

  25. X. Lan, M. Chen, M.H. Hudson, V. Kamysbayev, Y. Wang, P. Guyot-Sionnest, and D.V. Talapin, Quantum dot solids showing state-resolved band-like transport. Nat. Mater. 19, 323 (2020).

    Article  CAS  Google Scholar 

  26. G. Allan, and C. Delerue, Tight-binding calculations of the optical properties of HgTe nanocrystals. Phys. Rev. B 86, 165437 (2012).

    Article  Google Scholar 

  27. C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum Mechanics (New York: Wiley, 1977).

    Google Scholar 

  28. M.H. Weiler, R.L. Aggarwal, and B. Lax, Interband magnetoreflectance in semiconducting HgCdTe alloys. Phys. Rev. B 16, 3603 (1977).

    Article  CAS  Google Scholar 

  29. M.T. Czyżyk, and M. Podgórny, Energy bands and optical properties of HgTe and CdTe calculated on the basis of the tight-binding model with spin-orbit interaction. Phys. Status Solidi 98, 507 (1980).

    Article  Google Scholar 

  30. A. Svane, N.E. Christensen, M. Cardona, A.N. Chantis, M. Van Schilfgaarde, and T. Kotani, Quasiparticle band structures of β-HgS, HgSe, and HgTe. Phys. Rev. B 84, 205205 (2011).

    Article  Google Scholar 

  31. G.L. Hansen, and J.L. Schmit, Calculation of intrinsic carrier concentration in Hg1-xCdxTe. J. Appl. Phys. 54, 1639 (1983).

    Article  CAS  Google Scholar 

  32. P. Guyot-Sionnest, Electrical transport in colloidal quantum dot films. J. Phys. Chem. Lett. 3, 1169 (2012).

    Article  CAS  Google Scholar 

  33. C. Melnychuk, and P. Guyot-Sionnest, Slow Auger relaxation in HgTe colloidal quantum dots. J. Phys. Chem. Lett. 9, 2208 (2018).

    Article  CAS  Google Scholar 

  34. G. Shen, and P. Guyot-Sionnest, HgTe/CdTe and HgSe/CdX (X = S, Se, and Te) core/shell mid-infrared quantum dots. Chem. Mater. 31, 286 (2019).

    Article  CAS  Google Scholar 

  35. R.C. Hilborn, Einstein coefficients, cross sections, f values, dipole moments, and all that. Am. J. Phys. 50, 982 (1982).

    Article  CAS  Google Scholar 

  36. E. Yablonovitch, T.J. Gmitter, and R. Bhat, Inhibited and enhanced spontaneous emission from optically thin AlGaAs/GaAs Double Heterostructures. Phys. Rev. Lett. 61, 2546 (1988).

    Article  CAS  Google Scholar 

  37. P. de Vries, and A. Lagendijk, Resonant scattering and spontaneous emission in dielectrics: microscopic derivation of local-field effects. Phys. Rev. Lett. 81, 1381 (1998).

    Article  Google Scholar 

  38. E. Lhuillier, S. Keuleyan, and P. Guyot-Sionnest, Optical properties of HgTe colloidal quantum dots. Nanotechnology 23, 175705 (2012).

    Article  Google Scholar 

  39. S.H. Groves, R.N. Brown, and C.R. Pidgeon, Interband magnetoreflection and band structure of HgTe. Phys. Rev. 161, 779 (1967).

    Article  CAS  Google Scholar 

  40. R.A. Stradling, A millimetre microwave determination of the conduction band effective mass of HgTe. Proc. Phys. Soc. 90, 175 (1967).

    Article  Google Scholar 

  41. Y. Guldner, C. Rigaux, A. Mycielski, and Y. Couder, Magnetooptical investigation of HgCdTe mixed crystals. II. Semiconducting configuration and semimetal to semiconductor transition. Phys. Status Solidi 82, 149 (1977).

    Article  CAS  Google Scholar 

  42. P. Man, and D.S. Pan, Infrared absorption in HgTe. Phys. Rev. B 44, 8745 (1991).

    Article  CAS  Google Scholar 

  43. W. Szuszkiewicz, A.M. Witowski, and M. Grynberg, The dynamic dielectric function in HgSe and HgTe. Phys. Status Solidi B 87, 637 (1978).

    Article  CAS  Google Scholar 

  44. M. Grynberg, R. Le Toullec, and M. Balkanski, Dielectric function in HgTe between 8 and 300°K. Phys. Rev. B 9, 517 (1974).

    Article  CAS  Google Scholar 

  45. C. Delerue, G. Allan, and M. Lannoo, Concept of dielectric constant for nanosized systems. Phys. Rev. B 68, 115411 (2003).

    Article  Google Scholar 

  46. X. Cartoixà, and L.W. Wang, Microscopic dielectric response functions in semiconductor quantum dots. Phys. Rev. Lett. 94, 236804 (2005).

    Article  Google Scholar 

  47. P. Rastogi, A. Chu, T.H. Dang, Y. Prado, C. Gréboval, J. Qu, C. Dabard, A. Khalili, E. Dandeu, B. Fix, X.Z. Xu, S. Ithurria, G. Vincent, B. Gallas, and E. Lhuillier, Complex optical index of HgTe nanocrystal infrared thin films and its use for short wave infrared photodiode design. Adv. Opt. Mater. 9, 2002066 (2021).

    Article  CAS  Google Scholar 

  48. S.E. Schacham, and E. Finkman, Recombination mechanisms in p-type HgCdTe: freezeout and background flux effects. J. Appl. Phys. 57, 2001 (1985).

    Article  CAS  Google Scholar 

  49. P.C. Sercel, and A.L. Efros, Band-edge exciton in CdSe and other II-VI and III-V compound semiconductor nanocrystals: revisited. Nano Lett. 18, 4061 (2018).

    Article  CAS  Google Scholar 

  50. C. Melnychuk, and P. Guyot-Sionnest, Multicarrier dynamics in quantum dots. Chem. Rev. 121, 2325 (2021).

    Article  CAS  Google Scholar 

  51. P.T. Landsberg, Recombination in Semiconductors (Cambridge: Cambridge University Press, 1991).

    Google Scholar 

  52. V.I. Klimov, J.A. McGuire, R.D. Schaller, and V.I. Rupasov, Scaling of multiexciton lifetimes in semiconductor nanocrystals. Phys. Rev. B 77, 195324 (2008).

    Article  Google Scholar 

  53. H. Wen, B. Pinkie, and E. Bellotti, Direct and phonon-assisted indirect Auger and radiative recombination lifetime in HgCdTe, InAsSb, and InGaAs computed using Green’s function formalism. J. Appl. Phys. 118, 015702 (2015).

    Article  Google Scholar 

  54. C.H. Grein, M.E. Flatté, and Y. Chang, Modeling of recombination in HgCdTe. J. Electron. Mater. 37, 1415 (2008).

    Article  CAS  Google Scholar 

  55. R.R. Gerhardts, R. Dornhaus, and G. Nimtz, The Auger-effect in Hg1-xCdxTe. Solid State Electron. 21, 1467 (1978).

    Article  CAS  Google Scholar 

  56. J. Cohen, Introduction to noise in solid state devices. Natl. Bur. Stand. Techn. Note 83, 1169 (1982).

    Google Scholar 

  57. P. Guyot-Sionnest, M.M. Ackerman, and X. Tang, Colloidal quantum dots for infrared detection beyond silicon. J. Chem. Phys. 151, 060901 (2019).

    Article  Google Scholar 

  58. W. Shockley, and H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510 (1961).

    Article  CAS  Google Scholar 

  59. H. Liu, E. Lhuillier, and P. Guyot-Sionnest, 1/f noise in semiconductor and metal nanocrystal solids. J. Appl. Phys. 115, 154309 (2014).

    Article  Google Scholar 

  60. A. Pandey, and P. Guyot-Sionnest, Slow electron cooling in colloidal quantum dots. Science 322, 929 (2008).

    Article  CAS  Google Scholar 

  61. H. Liu, and P. Guyot-Sionnest, Photoluminescence lifetime of lead selenide colloidal quantum dots. J. Phys. Chem. C 114, 14860 (2010).

    Article  CAS  Google Scholar 

  62. C. Melnychuk, and P. Guyot-Sionnest, Auger suppression in n-type HgSe colloidal quantum dots. ACS Nano 13, 10512 (2019).

    Article  CAS  Google Scholar 

  63. A. Chu, C. Gréboval, N. Goubet, B. Martinez, C. Livache, J. Qu, P. Rastogi, F.A. Bresciani, Y. Prado, S. Suffit, S. Ithurria, G. Vincent, and E. Lhuillier, Near unity absorption in nanocrystal based short wave infrared photodetectors using guided mode resonators. ACS Photon. 6, 2553 (2019).

    Article  CAS  Google Scholar 

  64. D. Bozyigit, N. Yazdani, M. Yarema, O. Yarema, W.M.M. Lin, S. Volk, K. Vuttivorakulchai, M. Luisier, F. Juranyi, and V. Wood, Soft surfaces of nanomaterials enable strong phonon interactions. Nature 531, 618 (2016).

    Article  CAS  Google Scholar 

  65. D.V. Talapin, J.S. Lee, M.V. Kovalenko, and E.V. Shevchenko, Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389 (2010).

    Article  CAS  Google Scholar 

  66. A. Kamath, C. Melnychuk, and P. Guyot-Sionnest, Toward bright mid-infrared emitters: thick-shell n-Type HgSe/CdS Nanocrystals. J. Am. Chem. Soc. 143, 19567 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

C.M. gratefully acknowledges Hannah Yi for assistance with the coding aspects of this work. C.M. was financially supported by ARO Grant W911NF-18-1-0207, DARPA Grant 140D6318C01001 via subcontract 0101-18-SUOC-0002 to Sivananthan Laboratories, and the University of Chicago Physical Sciences Division.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Guyot-Sionnest.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 260 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melnychuk, C., Guyot-Sionnest, P. Thermodynamic Limits to HgTe Quantum Dot Infrared Detector Performance. J. Electron. Mater. 51, 1428–1435 (2022). https://doi.org/10.1007/s11664-021-09414-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09414-5

Keywords

Navigation