Skip to main content

Advertisement

Log in

Charge Transport Mechanism in a PECVD Deposited Low-k SiOCH Dielectric

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

One of the most important issues during the selection of low-k dielectrics is related to their intrinsic properties including their electric breakdown and leakage current that are predominantly determined by conduction mechanisms. This study is devoted to elucidating the charge transport mechanism in the SiOCH low-k dielectric films fabricated by plasma-enhanced chemical vapor deposition. By analyzing four bulk-limited models of the charge transport it was found that only the Nasyrov–Gritsenko model of phonon-assisted electron tunneling between neutral traps describes the experimental IVT characteristics with all the fitting parameters with reasonable physical values. The obtained thermal trap energy value 1.2 eV is confirmed independently by photoluminescence spectroscopy data analysis. The trap nature and comparison of the obtained results with the corresponding data for low-k films with similar chemical composition and deposited by the spin-on-glass technology using self-assembling chemistry is discussed. It is hypothesized that the defect with ionization energy of 1.2 eV is the oxygen divacancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E.N. Ogawa, O. Aubel, Electrical breakdown in advanced interconnect dielectrics in Advanced Interconnects for ULSI devices. (Wiley, 2012).

  2. A. Grill, J. Vac. Sci. Technol. B 34, 020801 (2016).

    Article  Google Scholar 

  3. O.V. Pedreira, in International Interconnect Technology Conference IITC2021 (Kyoto, Japan, 2021).

  4. C. Adelmann, K. Sankaran, S. Dutta, A. Gupta, J.-P. Soulié, M. Siniscalchi, S. Kundu, M. Mao, V. Founta, N. Jourdan, in ECS Meeting Abstracts (2020), Vol. MA2020-01, pp. 1293.

  5. L. Zhang, J.F. de Marneffe, N. Heylen, G. Murdoch, Z. Tokei, J. Boemmels, S. De Gendt, and M.R. Baklanov, Appl. Phys. Lett. 107, 092901 (2015).

    Article  Google Scholar 

  6. J.M. Atkin, E. Cartier, T.M. Shaw, R.B. Laibowitz, and T.F. Heinz, Appl. Phys. Lett. 93, 122902 (2008).

    Article  Google Scholar 

  7. J.M. Atkin, D. Song, T.M. Shaw, E. Cartier, R.B. Laibowitz, and T.F. Heinz, J. Appl. Phys. 103, 094104 (2008).

    Article  Google Scholar 

  8. E.A. Smirnov, K. Vanstreels, P. Verdonck, I. Ciofi, D. Shamiryan, M.R. Baklanov, and M. Phillips, Jap. J. Appl. Phys. 50, 05EB03 (2011).

    Article  Google Scholar 

  9. S. Shamuilia, V.V. Afanas’ev, P. Somers, A. Stesmans, Y.L. Li, Z. Tokei, G. Groeseneken, and K. Maex, Appl. Phys. Lett. 89, 2009 (2006).

    Article  Google Scholar 

  10. A.A. Gismatulin, V.A. Gritsenko, D.S. Seregin, K.A. Vorotilov, and M.R. Baklanov, Appl. Phys. Lett. 115, 082904 (2019).

    Article  Google Scholar 

  11. T.V. Perevalov, A.A. Gismatulin, A.E. Dolbak, V.A. Gritsenko, E.S. Trofimova, V.A. Pustovarov, D.S. Seregin, K.A. Vorotilov, and M.R. Baklanov, Phys. Status Solidi A 218, 2000654 (2021).

    Article  CAS  Google Scholar 

  12. T.V. Perevalov, A.A. Gismatulin, D.S. Seregin, Y. Wang, H. Xu, V.N. Kruchinin, E.V. Spesivtsev, V.A. Gritsenko, K.A. Nasyrov, I.P. Prosvirin, J. Zhang, K.A. Vorotilov, and M.R. Baklanov, J. Appl. Phys. 127, 195105 (2020).

    Article  CAS  Google Scholar 

  13. C. Wu, Y. Li, M.R. Baklanov, and K. Croes, ECS J. Solid State Sci. 4, N3065 (2015).

    Article  CAS  Google Scholar 

  14. Y. Kayaba, and T. Kikkawa, Jpn. J. Appl. Phys. 47, 5314 (2008).

    Article  CAS  Google Scholar 

  15. M.R. Baklanov, L. Zhao, E. Van Besien, and M. Pantouvaki, Microelectron. Eng. 88, 990 (2011).

    Article  CAS  Google Scholar 

  16. E. Van Besien, M. Pantouvaki, L. Zhao, D. De Roest, M.R. Baklanov, Z. Tokei, and G. Beyer, Microelectron. Eng. 92, 59 (2012).

    Article  Google Scholar 

  17. K. Vanstreels, I. Ciofi, Y. Barbarin, and M. Baklanov, J. Vac. Sci. Technol. B 31, 050604 (2013).

    Article  Google Scholar 

  18. A.M. Urbanowicz, D. Shamiryan, A. Zaka, P. Verdonck, S. De Gendt, and M.R. Baklanov, J. Electrochem. Soc. 157, H565 (2010).

    Article  CAS  Google Scholar 

  19. V. C. Ngwan, C. X. Zhu and A. Krishnamoorthy, in 2004 IEEE International Reliability Physics Symposium Proceedings, 571 (2004).

  20. T. Breuer, U. Kerst, C. Boit, E. Langer, H. Ruelke, and A. Fissel, J. Appl. Phys. 112, 124103 (2012).

    Article  Google Scholar 

  21. V. Jousseaume, A. Zenasni, O. Gourhant, L. Favennec, and M.R. Baklanov, in Advanced Interconnects for ULSI Technology, edited by M. R. Baklanov, P. Ho, and E. Zschech (Wiley, 2012).

  22. V.N. Kruchinin, V.A. Volodin, S.V. Rykhlitskii, V.A. Gritsenko, I.P. Posvirin, S. Xiaoping, and M.R. Baklanov, Opt. Spectrosc. 129, 681 (2021).

    Article  Google Scholar 

  23. J. Frenkel, Phys. Rev. B 54, 647 (1938).

    Article  Google Scholar 

  24. J. Frenkel, Tech. Phys. USSR 5, 685 (1938).

    CAS  Google Scholar 

  25. R.M. Hill, Philos. Mag. 23, 59 (1971).

    Article  CAS  Google Scholar 

  26. H. Adachi, Y. Shibata, and S. Ono, J. Phys. D: Appl. Phys. 4, 988 (1971).

    Article  CAS  Google Scholar 

  27. S.S. Makram-Ebeid, and M. Lannoo, Phys. Rev. B 25, 6406 (1982).

    Article  CAS  Google Scholar 

  28. K.A. Nasyrov, and V.A. Gritsenko, J. Appl. Phys. 109, 093705 (2011).

    Article  Google Scholar 

  29. L. Zhao, Z. Tokei, G. G. Gischia, H. Volders, and G. Beyer, in Proceedings of International Interconnect Technology Conference (IEEE, 2009), p. 206.

  30. K.A. Nasyrov, V.A. Gritsenko, Y.N. Novikov, E.H. Lee, S.Y. Yoon, and C.W. Kim, J. Appl. Phys. 96, 4293 (2004).

    Article  CAS  Google Scholar 

  31. V.A. Gritsenko, T.V. Perevalov, O.M. Orlov, and G.Y. Krasnikov, Appl. Phys. Lett. 109, 062904 (2016).

    Article  Google Scholar 

  32. V.A. Pustovarov, V.S. Aliev, T.V. Perevalov, V.A. Gritsenko, and A.P. Eliseev, J. Exp. Theor. Phys. 111, 989 (2010).

    Article  CAS  Google Scholar 

  33. V.A. Gritsenko, T.V. Perevalov, and D.R. Islamov, Phys. Rep. 613, 1 (2016).

    Article  CAS  Google Scholar 

  34. T.V. Perevalov, D.V. Gulyaev, V.S. Aliev, K.S. Zhuravlev, V.A. Gritsenko, and A.P. Yelisseyev, J. Appl. Phys. 116, 244109 (2014).

    Article  Google Scholar 

  35. V.A. Gritsenko, T.V. Perevalov, V.A. Voronkovskii, A.A. Gismatulin, V.N. Kruchinin, V.S. Aliev, V.A. Pustovarov, I.P. Prosvirin, Y. Roizin, and A.C.S. Appl, Mater. Int. 10, 3769 (2018).

    Article  CAS  Google Scholar 

  36. L. Skuja, J. Non-Crystalline Solids 239, 16 (1998).

    Article  CAS  Google Scholar 

  37. V.S. Kortov, A.F. Zatsepin, S.V. Gorbunov, and A.M. Murzakaev, Phys. Solid State 48, 1273 (2006).

    Article  CAS  Google Scholar 

  38. K. Raghavachari, D. Ricci, and G. Pacchioni, J. Chem. Phys. 116, 825 (2002).

    Article  CAS  Google Scholar 

  39. L.A. Bakaleinikov, M.V. Zamoryanskaya, E.V. Kolesnikova, V.I. Sokolov, and E.Y. Flegontova, Phys. Solid. State. 46, 1018 (2004).

    Article  CAS  Google Scholar 

  40. Y. Ishikawa, A.V. Vasin, J. Salonen, S. Muto, V.S. Lysenko, A.N. Nazarov, N. Shibata, and V.P. Lehto, J. Appl. Phys. 104, 083522 (2008).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Foundation for Basic Research, Grant No. 20-57-12003 (film fabrication, PL and PLE measurements), and under the state contract with ISP SBRAS No. 0242-2021-0003 (electrophysical measurements and simulation). The electrophysical measurements were made on the equipment of CKP "VTAN" in the ATRC department of NSU. The authors thank Dr A.E. Dolbak for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Perevalov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perevalov, T.V., Gismatulin, A.A., Gritsenko, V.A. et al. Charge Transport Mechanism in a PECVD Deposited Low-k SiOCH Dielectric. J. Electron. Mater. 51, 2521–2527 (2022). https://doi.org/10.1007/s11664-021-09411-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09411-8

Keywords

Navigation