Skip to main content
Log in

The Strong Effect of Microporous Column Depth on the Lithiation-Delithiation Behavior in Si Electrodes for Li-Ion Cells and the Resistance to Mechanical Damage

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Silicon microporous columnar structures possess inherent advantages for reversible lithium storage and high capacity, which make them attractive as potential negative electrodes for Li-ion batteries. This work demonstrates that a significant increase in Li storage capacity and cyclic performance can be achieved by increasing the depth of Si columns in the electrode. A set of electrodes with different column/pore depths were prepared by varying the etching time in direct electrochemical etching of (100) Si wafers. The other structural parameters, such as the porosity (52–60%) and Si mass fraction in the columns (0.40–0.48), were maintained nearly constant. The major finding of this work is that the specific capacity increased dramatically as the column/pore depth increased. Surprisingly, however, the post-cycling scanning electron microscopy (SEM) analysis indicated that the mechanical integrity of the electrodes during cycling increased with the column/pore depth. This improvement in mechanical stability of Si columns in the deeper columnar structure seems to explain the increased specific capacity and its stability over a large number of cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. L. Zhang, C. Zhao, Q. Jian, M. Wu, and T. Zhao, A high-performance lithiated silicon-sulfur battery with pomegranate-structured electrodes. J. Power Sources 506, 230174 (2021).

    Article  CAS  Google Scholar 

  2. M.V. Shelke, H. Gullapalli, K. Kalaga, M.-T.F. Rodrigues, R.R. Devarapalli, R. Vajtai, and P.M. Ajayan, Facile synthesis of 3D anode assembly with Si nanoparticles sealed in highly pure few layer graphene deposited on porous current collector for long life Li-ion battery. Adv. Mater. Interfaces 4, 1601043 (2017).

    Article  Google Scholar 

  3. F.M. Hassan, V. Chabot, A.R. Elsayed, X. Xiao, and Z. Chen, Engineered Si electrode nanoarchitecture: a scalable postfabrication treatment for the production of next-generation Li-ion batteries. Nano Lett. 14, 277 (2014).

    Article  CAS  Google Scholar 

  4. H. Schmidt, B. Jerliu, E. Hüger, and J. Stahn, Volume expansion of amorphous silicon electrodes during potentiostatic lithiation of Li-ion batteries. Electrochem. Commun. 115, 106738 (2020).

    Article  CAS  Google Scholar 

  5. J.H. Ryu, J.W. Kim, Y.-E. Sung, and S.M. Oh, Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochem. Solid State Lett. 7, A306 (2004).

    Article  CAS  Google Scholar 

  6. S. Zhu, Y. Lin, Z. Yan, J. Jiang, D. Yang, and N. Du, Novel design of uniform Si@graphite@C composite as high-performance Li-ion battery anodes. Electrochim. Acta 377, 138092 (2021).

    Article  CAS  Google Scholar 

  7. Y. Xu, E. Swaans, S. Chen, S. Basak, P. Paul, R.M.L. Harks, B. Peng, H.W. Zandbergen, D.M. Borsa, and F.M. Mulder, A high-performance Li-ion anode from direct deposition of Si nanoparticles. Nano Energy 38, 477 (2017).

    Article  CAS  Google Scholar 

  8. J. Yang, L. Zhang, T. Zhang, X. Wang, Y. Gao, and Q. Fang, Self-healing strategy for Si nanoparticles towards practical application as anode materials for Li-ion batteries. Electrochem. Commun. 87, 22 (2018).

    Article  CAS  Google Scholar 

  9. C.-B. Chang, C.-Y. Tsai, K.-T. Chen, and H.-Y. Tuan, Solution-grown phosphorus-hyperdoped silicon nanowires/carbon nanotube bilayer fabric as a high-performance lithium-ion battery anode. ACS Appl. Energy Mater. 4, 3160 (2021).

    Article  CAS  Google Scholar 

  10. K. Peng, J. Jie, W. Zhang, and S.-T. Lee, Silicon nanowires for rechargeable lithium-ion battery anodes. Appl. Phys. Lett. 93, 033105 (2008).

    Article  Google Scholar 

  11. C.K. Chan, R.N. Patel, M.J. O’Connell, B.A. Korgel, and Y. Cui, Solution-grown silicon nanowires for lithium-ion battery anodes. ACS Nano 4, 1443 (2010).

    Article  CAS  Google Scholar 

  12. H. Merabet, Y. De Luna, K. Mohamed, and N. Bensalah, Fabrication of Si3N4@Si@Cu thin films by RF sputtering as high energy anode material for Li-ion batteries. Materials 14, 2824 (2021).

    Article  CAS  Google Scholar 

  13. M. Salah, C. Hall, P. Murphy, C. Francis, R. Kerr, B. Stoehr, S. Rudd, and M. Fabretto, Doped and reactive silicon thin film anodes for lithium ion batteries: a review. J. Power Sources 506, 230194 (2021).

    Article  CAS  Google Scholar 

  14. M. Thakur, R. Pernites, S.L. Sinsabaugh, M.S. Wong, and S.L. Biswal, Porous silicon as anode material for lithium-ion batteries, Silicon-Based Nanomaterials. ed. H. Li, J. Wu, and Z.M. Wang (New York: Springer, 2013), pp. 1–23.

    Google Scholar 

  15. G.V. Li, E.V. Astrova, A.M. Rumyantsev, V.B. Voronkov, A.V. Parfen’eva, V.A. Tolmachev, T.L. Kulova, and A.M. Skundin, Microstructured silicon anodes for lithium-ion batteries. Russ. J. Electrochem. 51, 899 (2015).

    Article  CAS  Google Scholar 

  16. E. Mills, J. Cannarella, Q. Zhang, S. Bhadra, C.B. Arnold, and S.Y. Chou, Silicon nanopillar anodes for lithium-ion batteries using nanoimprint lithography with flexible molds. J. Vacuum Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 32, 06FG10 (2014).

    Google Scholar 

  17. Z. Liu, S. Liu, R. Dong, S. Yang, H. Lu, A. Narita, X. Feng, and K. Müllen, High power in-plane micro-supercapacitors based on mesoporous polyaniline patterned graphene. Small 13, 1603388 (2017).

    Article  Google Scholar 

  18. J.F.M. Oudenhoven, L. Baggetto, and P.H.L. Notten, All-solid-state lithium-ion microbatteries: a review of various three-dimensional concepts. Adv. Energy Mater. 1, 10 (2011).

    Article  CAS  Google Scholar 

  19. R. Hahn, M. Ferch, N.A. Kyeremateng, K. Hoeppner, K. Marquardt, and G.A. Elia, Characteristics of Li-ion micro batteries fully batch fabricated by micro-fluidic MEMS packaging. Microsyst. Technol. (2018). https://doi.org/10.1007/s00542-018-3933-z.

    Google Scholar 

  20. Q. Weng, S. Wang, L. Liu, X. Lu, M. Zhu, Y. Li, F. Gabler, and O.G. Schmidt, A compact tube-in-tube microsized lithium-ion battery as an independent microelectric power supply unit. Cell Rep. Phys. Sci. 2, 100429 (2021).

    Article  CAS  Google Scholar 

  21. H. Ning, J.H. Pikul, R. Zhang, X. Li, S. Xu, J. Wang, J.A. Rogers, W.P. King, and P.V. Braun, Holographic patterning of high-performance on-chip 3D lithium-ion microbatteries. Proc. Natl. Acad. Sci. 112, 6573 (2015).

    Article  CAS  Google Scholar 

  22. W. Lai, C.K. Erdonmez, T.F. Marinis, C.K. Bjune, N.J. Dudney, F. Xu, R. Wartena, and Y.-M. Chiang, Ultrahigh-energy-density microbatteries enabled by new electrode architecture and micropackaging design. Adv. Mater. 22, E139 (2010).

    Article  CAS  Google Scholar 

  23. A. Reyes Jiménez, R. Klöpsch, R. Wagner, U.C. Rodehorst, M. Kolek, R. Nölle, M. Winter, and T. Placke, A step toward high-energy silicon-based thin film lithium ion batteries. ACS Nano 11, 4731 (2017).

    Article  Google Scholar 

  24. P.H.L. Notten, F. Roozeboom, R.A.H. Niessen, and L. Baggetto, 3-D integrated all-solid-state rechargeable batteries. Adv. Mater. 19, 4564 (2007).

    Article  CAS  Google Scholar 

  25. K. Hoeppner, M. Ferch, M. Eisenreich, K. Marquardt, R. Hahn, P. Mackowiak, B. Mukhopadhyay, H.D. Ngo, R. Gernhardt, M. Toepper, and K.D. Lang, Design, fabrication and testing of silicon-integrated Li-ion secondary micro batteries with side-by-side electrodes. J. Phys. Conf. Ser. 476, 012086 (2013).

    Article  CAS  Google Scholar 

  26. D. Ruzmetov, V.P. Oleshko, P.M. Haney, H.J. Lezec, K. Karki, K.H. Baloch, A.K. Agrawal, A.V. Davydov, S. Krylyuk, Y. Liu, and J. Huang, Electrolyte stability determines scaling limits for solid-state 3D Li ion batteries. Nano Lett. 12, 505 (2012).

    Article  CAS  Google Scholar 

  27. E.V. Astrova, G.V. Fedulova, I.A. Smirnova, A.D. Remenyuk, T.L. Kulova, and A.M. Skundin, Porous silicon based negative electrodes for lithium ion batteries. Tech. Phys. Lett. 37, 731 (2011).

    Article  CAS  Google Scholar 

  28. M.J. Madou, Fundamentals of Microfabrication and Nanotechnology, Three-Volume Set (Boca Raton: CRC Press, 2018).

    Book  Google Scholar 

  29. M.J. Sailor, Porous Silicon in Practice: Preparation, Characterization and Applications (New York: Wiley, 2012).

    Google Scholar 

  30. H.-C. Shin, J.A. Corno, J.L. Gole, and M. Liu, Porous silicon negative electrodes for rechargeable lithium batteries. J. Power Sources 139, 314 (2005).

    Article  CAS  Google Scholar 

  31. M. Thakur, M. Isaacson, S.L. Sinsabaugh, M.S. Wong, and S.L. Biswal, Gold-coated porous silicon films as anodes for lithium ion batteries. J. Power Sources 205, 426 (2012).

    Article  CAS  Google Scholar 

  32. J. Zhu, C. Gladden, N. Liu, Y. Cui, and X. Zhang, Nanoporous silicon networks as anodes for lithium ion batteries. Phys. Chem. Chem. Phys. 15, 440 (2013).

    Article  CAS  Google Scholar 

  33. B. Vadlamani, M. Jagannathan, J. Palmer, and K.S. Ravi Chandran, Large effect of structural variations in the columnar silicon electrode on energy storage capacity and electrode structural integrity in Li-ion cells. J. Mater. Res. 35, 2976 (2020).

    Article  CAS  Google Scholar 

  34. X.G. Zhang, Morphology and formation mechanisms of porous silicon. J. Electrochem. Soc. 151, C69 (2003).

    Article  Google Scholar 

  35. V. Lehmann, R. Stengl, and A. Luigart, On the morphology and the electrochemical formation mechanism of mesoporous silicon. Mater. Sci. Eng. B 69, 11 (2000).

    Article  Google Scholar 

  36. A.M. Tinsley-Bown, L.T. Canham, M. Hollings, M.H. Anderson, C.L. Reeves, T.I. Cox, S. Nicklin, D.J. Squirrell, E. Perkins, A. Hutchinson, and M.J. Sailor, Tuning the pore size and surface chemistry of porous silicon for immunoassays. Phys. Status Solidi (a) 182, 547 (2000).

    Article  CAS  Google Scholar 

  37. H. Ouyang, M. Archer, and P.M. Fauchet, Porous silicon electrical and optical biosensors, Frontiers in Surface Nanophotonics. ed. D.L. Andrews (New York: Springer, 2007), p. 49.

    Chapter  Google Scholar 

  38. E.E. Underwood, Quantitative Stereology (New York: Addison-Wesley Publishing Company, 1970).

    Google Scholar 

  39. K. Kang, H.-S. Lee, D.-W. Han, G.-S. Kim, D. Lee, G. Lee, Y.-M. Kang, and M.-H. Jo, Maximum Li storage in Si nanowires for the high capacity three-dimensional Li-ion battery. Appl. Phys. Lett. 96, 053110 (2010).

    Article  Google Scholar 

  40. S. Hansen, E. Quiroga-González, J. Carstensen, and H. Föll, Size-dependent cyclic voltammetry study of silicon microwire anodes for lithium ion batteries. Electrochim. Acta 217, 283 (2016).

    Article  CAS  Google Scholar 

  41. W.J. Weydanz, M. Wohlfahrt-Mehrens, and R.A. Huggins, A room temperature study of the binary lithium-silicon and the ternary lithium-chromium-silicon system for use in rechargeable lithium batteries. J. Power Sources 81, 237 (1999).

    Article  Google Scholar 

  42. M. Green, E. Fielder, B. Scrosati, M. Wachtler, and J.S. Moreno, Structured silicon anodes for lithium battery applications. Electrochem. Solid State Lett. 6, A75 (2003).

    Article  CAS  Google Scholar 

  43. T.D. Hatchard, and J.R. Dahn, In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J. Electrochem. Soc. 151, A838 (2004).

    Article  CAS  Google Scholar 

  44. J. Li, and J.R. Dahn, An in situ x-ray diffraction study of the reaction of Li with crystalline Si. J. Electrochem. Soc. 154, A156 (2007).

    Article  CAS  Google Scholar 

  45. S. Misra, N. Liu, J. Nelson, S.S. Hong, Y. Cui, and M.F. Toney, In situ X-ray diffraction studies of (de) lithiation mechanism in silicon nanowire anodes. ACS Nano 6, 5465 (2012).

    Article  CAS  Google Scholar 

  46. M.N. Obrovac, and L. Christensen, Structural changes in silicon anodes during lithium insertion/extraction. Electrochem. Solid State Lett. 7, A93 (2004).

    Article  CAS  Google Scholar 

  47. A. Netz, and R.A. Huggins, Amorphous silicon formed in situ as negative electrode reactant in lithium cells. Solid State Ionics 175, 215 (2004).

    Article  CAS  Google Scholar 

  48. Y.M. Lee, J.Y. Lee, H.-T. Shim, J.K. Lee, and J.-K. Park, SEI layer formation on amorphous Si thin electrode during precycling. J. Electrochem. Soc. 154, A515 (2007).

    Article  CAS  Google Scholar 

  49. S. Bourderau, T. Brousse, and D.M. Schleich, Amorphous silicon as a possible anode material for Li-ion batteries. J. Power Sources 81, 233 (1999).

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by the DOE Office of Science, Program on Neutron Scattering, through the Grant: DE-SC0019056.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Srinivasan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srinivasan, R., Ravi Chandran, K.S. The Strong Effect of Microporous Column Depth on the Lithiation-Delithiation Behavior in Si Electrodes for Li-Ion Cells and the Resistance to Mechanical Damage. J. Electron. Mater. 51, 857–875 (2022). https://doi.org/10.1007/s11664-021-09365-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09365-x

Keywords

Navigation