Skip to main content
Log in

The Effect of LBS and LBSCA Glass on the Sintering and Microwave Dielectric Properties of Li2(Mg0.96Ni0.04)SiO4 Ceramic

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The sintering behavior, microstructure, and microwave dielectric properties of Li2(Mg0.96Ni0.04)SiO4 ceramics with different amounts of LBS and LBSCA glass were studied. This experiment is based on the traditional solid-state reaction method. In this work, the microstructure of the composite ceramics with different kinds of glass was analyzed by SEM. Excellent microwave dielectric properties of the composite ceramics were obtained with sintering at 900°C: \(\varepsilon_{r}\) = 5.49, \(Q \times f\) = 18,448 GHz at 16 GHz, \(\tau_{f}\) = −15.3 ppm/°C with 4 wt.% LBS glass, \(\varepsilon_{r}\) = 5.58, \(Q \times f\) = 20,248 GHz at 16 GHz, \(\tau_{f}\) = −15.2 ppm/°C with 2 wt.% LBSCA glass. The addition of CaO and Al2O3 helped to improve the efficiency of sintering in the Li2(Mg0.96Ni0.04)SiO4 ceramic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Ohsato, T. Tsunooka, A. Kan, Y. Ohishi, Y. Miyauchi, Y. Tohdo, T. Okawa, K. Kakimoto, and H. Ogawa, Microwave-millimeterwave dielectric materials. Key Eng. Mat. 269, 195 (2004).

    Article  CAS  Google Scholar 

  2. X. Wang, W. Lei, R. Ang, and W. Lu, ZnAl2O4–TiO2–SrAl2Si2O8 low-permittivity microwave dielectric ceramics. Ceram. Int. 39, 1707 (2013).

    Article  CAS  Google Scholar 

  3. X. Lan, Z. Zou, W. Lu, J. Zhu, and W. Lei, Phase transition and low-temperature sintering of Zn(Mn1-xAlx)2O4 ceramics for LTCC applications. Ceram. Int. 42, 17731 (2016).

    Article  CAS  Google Scholar 

  4. H. Chen, H. Su, H. Zhang, T. Zhou, B. Zhang, J. Zhang, and X. Tang, Low-temperature sintering and microwave dielectric properties of (Zn1−xCox)2SiO4 ceramics. Ceram. Int. 40, 14655 (2014).

    Article  CAS  Google Scholar 

  5. A. Feteira, and D. Sinclair, Microwave dielectric properties of low firing temperature Bi2W2O9 ceramics. J. Am. Ceram. Soc. 91, 1338 (2008).

    Article  CAS  Google Scholar 

  6. G. Yao, P. Liu, H. Zhang, and J. Calame, Novel series of low-firing microwave dielectric ceramics: Ca5A4(VO4)6 (A2+=Mg, Zn). J. Am. Ceram. Soc. 96, 1691 (2013).

    Article  CAS  Google Scholar 

  7. R. Peng, L. Shi, Y. Lu, X. Shi, G. Wang, Y. Li, H. Su, D. Chen, and Y. He, Temperature stability adjustment of cobalt-doped Li2MgSiO4 ceramic: its’ sintering, dielectric, and mechanical properties. J. Mater. Res. Technol. 14, 1312 (2021).

    Article  CAS  Google Scholar 

  8. R. Peng, H. Su, D. An, Y. Lu, Z. Tao, D. Chen, L. Shi, and Y. Li, The sintering and dielectric properties modification of Li2MgSiO4 ceramic with Ni2+-ion doping based on calculation and experiment. J. Mater. Res. Technol. 9, 1344 (2020).

    Article  CAS  Google Scholar 

  9. R. Peng, Y. Li, H. Su, Y. Lu, Y. Yun, Q. Zhang, and S. Zhang, Effect of cobalt-doping on the dielectric properties and densification temperature of Li2MgSiO4 ceramic: calculation and experiment. J. Alloy. Compd. 827, 154162 (2020).

    Article  CAS  Google Scholar 

  10. S. George, P. Anjana, V. Deepu, P. Mohanan, and M. Sebastian, Low-temperature sintering and microwave dielectric properties of Li2MgSiO4 ceramics. J. Am. Ceram. Soc. 92, 1244 (2009).

    Article  CAS  Google Scholar 

  11. T. Joseph, M. Sebastian, H. Sreemoolanadhan, and V. Sree Nageswari, Effect of glass addition on the microwave dielectric properties of CamgSi2O6 ceramics. Int. J. Appl. Ceram. Tec. 7, E98 (2009).

    Article  Google Scholar 

  12. T. Sasikala, M. Suma, P. Mohanan, C. Pavithran, and M. Sebastian, Forsterite-based ceramic–glass composites for substrate applications in microwave and millimeter wave communications. J. Alloy. Compd. 461, 555 (2008).

    Article  CAS  Google Scholar 

  13. H. Zuo, X. Tang, H. Zhang, Y. Lai, Y. Jing, and H. Su, Low-dielectric-constant LiAlO2 ceramics combined with LBSCA glass for LTCC applications. Ceram. Int. 43, 8951 (2017).

    Article  CAS  Google Scholar 

  14. B. Hakki, and P. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range. Ire Trans. Microw. Theory Tech. 8, 402–410 (2003).

    Article  Google Scholar 

  15. C. Zhang, R. Zuo, J. Zhang, Y. Wang, and J. Jones, Structure-dependent microwave dielectric properties and middle-temperature sintering of forsterite (Mg1-xNix)2SiO4 ceramics. J. Am. Ceram. Soc. 98, 702 (2015).

    Article  CAS  Google Scholar 

  16. V. Gurevich, and A. Tagantsev, Intrinsic dielectric loss in crystals. Adv. Phys. 40, 719 (1991).

    Article  CAS  Google Scholar 

  17. S. Penn, N. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, and K. Schrapel, Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. J. Am. Ceram. Soc. 80, 1885 (1997).

    Article  CAS  Google Scholar 

  18. M. Guo, G. Dou, S. Gong, and D. Zhou, Low-temperature sintered MgWO4–CaTiO3 ceramics with near-zero temperature coefficient of resonant frequency. J. Eur. Ceram. Soc. 32, 883 (2012).

    Article  CAS  Google Scholar 

  19. R. Peng, Y. Li, G. Yu, Y. Lu, and S. Li, Effect of Co2+ substitution on the microwave dielectric properties of LiZnPO4 ceramics. J. Electron. Mater. 47, 7281 (2018).

    Article  CAS  Google Scholar 

  20. C. Xia, D. Jiang, G. Chen, Y. Luo, B. Li, C. Yuan, and C. Zhou, Microwave dielectric ceramic of LiZnPO4 for LTCC applications. J. Mater. Sci-Mater. El. 28, 12026 (2017).

    Article  CAS  Google Scholar 

  21. D. Thomas, and M. Sebastian, Temperature-compensated LiMgPO4: a new glass-free low-temperature cofired ceramic. J. Am. Ceram. Soc. 93, 3828 (2010).

    Article  CAS  Google Scholar 

  22. T. Guo, Y. Li, O. Wahyudi, S. Chen, X. Wang, and J. Chen, Microwave dielectric properties of AZn2(PO4)2(A=Sr, Ba) ceramics. Ferroelectrics 492, 91 (2016).

    Article  CAS  Google Scholar 

  23. P. Zhang, S. Wu, and M. Xiao, The microwave dielectric properties and crystal structure of low temperature sintering LiNiPO4 ceramics. J. Eur. Ceram. Soc. 38, 4433 (2018).

    Article  CAS  Google Scholar 

  24. X. Hu, Z. Cheng, Y. Li, and Z. Ling, Dielectric relaxation and microwave dielectric properties of low temperature sintering LiMnPO4 ceramics. J. Alloy. Compd. 651, 290 (2015).

    Article  CAS  Google Scholar 

  25. J. Kim, N. Nguyen, J. Lim, D. Paik, S. Nahm, J. Paik, J. Kim, and H. Lee, Low-temperature sintering and microwave dielectric properties of the Zn2SiO4 ceramics. J. Am. Ceram. Soc. 91, 671 (2008).

    Article  CAS  Google Scholar 

  26. S. Yoon, S. Shim, K. Kim, J. Park, and S. Kim, Low-temperature preparation and microwave dielectric properties of ZBS glass–Al2O3 composites. Ceram. Int. 35, 1271 (2009).

    Article  CAS  Google Scholar 

  27. E. Kim, B. Chun, R. Freer, and R. Cernik, Effects of packing fraction and bond valence on microwave dielectric properties of A2+B6+O4 (A2+:Ca, Pb, Ba; B6+:Mo, W) ceramics. J. Eur. Ceram. Soc. 30, 1731 (2010).

    Article  CAS  Google Scholar 

  28. U. Došler, M. Kržmanc, and D. Suvorov, The synthesis and microwave dielectric properties of Mg3B2O6 and Mg2B2O5 ceramics. J. Eur. Ceram. Soc. 30, 413 (2010).

    Article  Google Scholar 

  29. R. Umemura, H. Ogawa, H. Ohsato, A. Kan, and A. Yokoi, Microwave dielectric properties of low-temperature sintered Mg3(VO4)2 ceramic. J. Eur. Ceram. Soc. 25, 2865 (2005).

    Article  CAS  Google Scholar 

  30. T. Sasikala, C. Pavithran, and M. Sebastian, Effect of lithium magnesium zinc borosilicate glass addition on densification temperature and dielectric properties of Mg2SiO4 ceramics. J. Mater. Sci-Mater. EL. 21, 141 (2009).

    Article  Google Scholar 

  31. B. Choi, G. Sun, and E. Kim, Microwave dielectric properties of diopside glass-ceramics. Ceram. Int. 39, S677 (2013).

    Article  CAS  Google Scholar 

  32. G. Dou, D. Zhou, S. Gong, and M. Guo, Low temperature sintering and microwave dielectric properties of Li2ZnSiO4 ceramics with ZB glass. J. Mater. Sci-Mater. EL. 24, 1601 (2012).

    Article  Google Scholar 

  33. M. Guo, Y. Li, G. Dou, and J. Lin, A new microwave dielectric ceramics for LTCC applications: Li2Mg2(WO4)3 ceramics. J. Mater. Sci-Mater. EL. 25, 3712 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Jiangxi Innovative Talent Program and Sichuan Science and Technology Program (Grant No. 2021JDTD0026). We would like to thank Kelly Chen from J.H.S. 259 William McKinley, Brooklyn, NY 11228.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanxun Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Li, Y. & Duan, Z. The Effect of LBS and LBSCA Glass on the Sintering and Microwave Dielectric Properties of Li2(Mg0.96Ni0.04)SiO4 Ceramic. J. Electron. Mater. 51, 670–674 (2022). https://doi.org/10.1007/s11664-021-09321-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09321-9

Keywords

Navigation