Skip to main content
Log in

Microporous PVDF–PMMA Blend-Based Gel Polymer Electrolyte for Electrochemical Applications: Effect of PMMA on Electrochemical and Structural Properties

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper presents a study on a porous poly(methyl methacrylate) (PMMA)/polyvinylidene fluoride (PVDF) blend-based gel polymer electrolyte, activated in a liquid electrolyte of sodium tetrafluoroborate (NaBF4) in 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4) ionic liquid. The optimized membrane shows porosity and liquid electrolyte uptake of 59% and 187%, respectively, and a maximum ionic conductivity of ~ 0.8 mS cm−1. The membrane shows a Na+ ion transport number of 0.21 and an electrochemical stability window of ~ 5.5 V. A prototype battery using the optimized membrane delivers a discharge capacity of 130 mA h g−1 at a drain current of 25 mA g−1.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Materials

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

Code Availability

Not applicable.

References

  1. E. Bekaert, L. Buannic, U. Lassi, A. Llordés, and J. Salminen, Emerging Nanotechnologies in Rechargeable Energy Storage Systems, ed. L. Rodriguez and N. Omar (Boston: Elsevier, 2017), p. 1.

    Google Scholar 

  2. K.S. Ngai, S. Ramesh, K. Ramesh, and J.C. Juan, A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22, 1259 (2016).

    Article  CAS  Google Scholar 

  3. A.M. Stephan, and K.S. Nahm, Review on composite polymer electrolytes for lithium batteries. Polymer 47, 5952 (2006).

    Article  CAS  Google Scholar 

  4. A. Varzi, R. Raccichini, S. Passerini, and B. Scrosati, Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries. J. Mater. Chem. A 4, 17251 (2016).

    Article  CAS  Google Scholar 

  5. S. Ramesh, O. Uma, R. Shanti, L.J. Yi, and K. Ramesh, Preparation and characterization of poly (ethyl methacrylate) based polymer electrolytes doped with 1-butyl-3-methylimidazolium trifluoromethanesulfonate. Measurement 48, 263 (2014).

    Article  Google Scholar 

  6. J.Y. Sanchez, F. Alloin, and C.P. Lepmi, Polymeric materials in energy storage and conversion. Mol. Cryst. Liq. Cryst. 324, 257 (1998).

    Article  CAS  Google Scholar 

  7. G. Feuillade, and P. Perche, Ion-conductive macromolecular gels and membranes for solid lithium cells. J. Appl. Electrochem. 5, 63 (1975).

    Article  CAS  Google Scholar 

  8. S. Ramesh, and L.C. Wen, Investigation on the effects of addition of SiO2 nanoparticles on ionic conductivity, FTIR, and thermal properties of nanocomposite PMMA–LiCF3SO3–SiO2. Ionics 16, 255 (2009).

    Article  Google Scholar 

  9. D. Saikia, Y.W. Chen-Yang, Y.T. Chen, Y.K. Li, and S.I. Lin, Investigation of ionic conductivity of composite gel polymer electrolyte membranes based on P(VDF-HFP), LiClO4 and silica aerogel for lithium ion battery. Desalination 234, 24 (2008).

    Article  CAS  Google Scholar 

  10. S. Ramesh, C.W. Liew, and K. Ramesh, Evaluation and investigation on the effect of ionic liquid onto PMMA-PVC gel polymer blend electrolytes. J. Non Cryst. Solids 357, 2132 (2011).

    Article  CAS  Google Scholar 

  11. K. Mishra, A. Garg, R. Sharma, R. Gautam, and S.S. Pundir, Effect of blending of PMMA on PVdF-HFP + NaCF3SO3-EC-PC gel polymer electrolyte. Mater. Today Proc. 12, 621 (2019).

    Article  CAS  Google Scholar 

  12. A. Swaminathan, R. Ravi, M. Sasikumar, M. Dasaiah, G. Hirankumar, and S. Ayyasamy, Preparation and characterization of PVA/PAM/NH4SCN polymer film by ultrasound-assisted solution casting method for application in electric double layer capacitor. Ionics 26, 4113 (2020).

    Article  CAS  Google Scholar 

  13. M. Helen, B. Viswanathan, and S.S. Murthy, Poly(vinyl alcohol)-polyacrylamide blends with cesium salts of heteropolyacid as a polymer electrolyte for direct methanol fuel cell applications. J. Appl. Polym. Sci. 116, 3437 (2010).

    CAS  Google Scholar 

  14. A. Du Pasquier, P.C. Warren, D. Culver, A.S. Gozdz, G.G. Amatucci, and J.-M. Tarascon, Plastic PVDF-HFP electrolyte laminates prepared by a phase-inversion process. Solid State Ion. 135, 249 (2000).

    Article  Google Scholar 

  15. Y.Q. Yang, Z. Chang, M.X. Li, X.W. Wang, and Y.P. Wu, A sodium ion conducting gel polymer electrolyte. Solid State Ion. 269, 1 (2015).

    Article  CAS  Google Scholar 

  16. D.T. Vo, H.N. Do, T.T. Nguyen, T.T.H. Nguyen, V.M. Tran, S. Okada, and M.L.P. Le, Sodium ion conducting gel polymer electrolyte using poly(vinylidene fluoride hexafluoropropylene). Mat. Sci. Eng. B 241, 27 (2019).

    Article  CAS  Google Scholar 

  17. N. Yadav, K. Mishra, and S.A. Hashmi, Optimization of porous polymer electrolyte for quasi-solid-state electrical double layer supercapacitor. Electrochim. Acta 235, 570 (2017).

    Article  CAS  Google Scholar 

  18. H. Verma, K. Mishra, and D.K. Rai, Sodium ion conducting nanocomposite polymer electrolyte membrane for sodium ion batteries. J. Solid State Electrochem. 24, 521 (2020).

    Article  CAS  Google Scholar 

  19. M.S. Syali, D. Kumar, K. Mishra, and D.K. Kanchan, Recent advances in electrolytes for room-temperature sodium-sulfur batteries: a review. Energy Storage Mater. 31, 351 (2020).

    Google Scholar 

  20. K. Mishra, N. Yadav, and S.A. Hashmi, Recent progress in electrode and electrolyte materials for flexible sodium-ion batteries. J. Mater. Chem. A 8, 22507 (2020).

    Article  CAS  Google Scholar 

  21. G. Li, Z. Li, P. Zhang, H. Zhang, and Y. Wu, Research on a gel polymer electrolyte for Li-ion batteries. Pure Appl. Chem. 80, 2553 (2008).

    Article  CAS  Google Scholar 

  22. C. Liew, R. Durairaj, and S. Ramesh, Rheological studies of PMMA–PVC based polymer blend electrolytes with LiTFSI as doping salt. PLoS ONE 9, e102815 (2014).

    Article  Google Scholar 

  23. C.W. Liew, S. Ramesh, and R. Durairaj, Impact of low viscosity ionic liquid on PMMA–PVC–LiTFSI polymer electrolytes based on AC-impedance, dielectric behavior, and HATR–FTIR characteristics. J. Mater. Res. 27, 2996 (2012).

    Article  CAS  Google Scholar 

  24. I. Nicotera, L. Coppola, C. Oliviero, M. Castriota, and E. Cazzanelli, Investigation of ionic conduction and mechanical properties of PMMA–PVdF blend-based polymer electrolytes. Solid State Ion. 177, 581 (2006).

    Article  CAS  Google Scholar 

  25. S. Rajendran, O. Mahendran, and R. Kannan, Characterisation of [(1–x)PMMA–xPVdF] polymer blend electrolyte with Li+ ion. Fuel 81, 1077 (2002).

    Article  CAS  Google Scholar 

  26. Z. Wen, T. Itoh, Y. Ichikawa, M. Kubo, and O. Yamamoto, Blend-based polymer electrolytes of poly(ethylene oxide) and hyperbranched poly[bis(triethylene glycol)benzoate] with terminal acetyl groups. Solid State Ion. 134, 281 (2000).

    Article  CAS  Google Scholar 

  27. K. Mishra, S.A. Hashmi, and D.K. Rai, Nanocomposite blend gel polymer electrolyte for proton battery application. J. Solid State Electrochem. 17, 785 (2012).

    Article  Google Scholar 

  28. N. Yadav, and S.A. Hashmi, Ionic liquid incorporated, redox-active blend polymer electrolyte for high energy density quasi-solid-state carbon supercapacitor. J. Power Sources 451, 227771 (2020).

    Article  CAS  Google Scholar 

  29. K. Sundaramahalingam, D. Vanitha, N. Nallamuthu, A. Manikandan, and M. Muthuvinayagam, Electrical properties of lithium bromide poly ethylene oxide/poly vinyl pyrrolidone polymer blend electrolyte. Phys. B: Condens. Matter 553, 120 (2018).

    Article  Google Scholar 

  30. S. Yoon, F. Ahmed, W. Zhang, T. Ryu, L. Jin, D. Kim, and H. Jang, Flexible blend polymer electrolyte membranes with excellent conductivity for fuel cells. Int. J. Hydrog. Energy 45, 27611 (2020).

    Article  CAS  Google Scholar 

  31. M.A. Saadiah, D. Zhang, Y. Nagao, S.K. Muzakir, and A.S. Samsudin, Reducing crystallinity on thin film based CMC/PVA hybrid polymer for application as a host in polymer electrolytes. J. Non Cryst. Solids 511, 201 (2019).

    Article  CAS  Google Scholar 

  32. S.B. Aziz, M.H. Hamsan, M.F.Z. Kadir, and H.J. Woo, Design of polymer blends based on chitosan:POZ with improved dielectric constant for application in polymer electrolytes and flexible electronics. Adv. Polym. Technol. 2020, 1 (2020).

    Article  Google Scholar 

  33. M. Watanabe, M.L. Thomas, S. Zhang, K. Ueno, T. Yasuda, and K. Dokko, Application of ionic liquids to energy storage and conversion materials and devices. Chem. Rev. 117, 7190 (2017).

    Article  CAS  Google Scholar 

  34. P.G. Bruce, and C.A. Vincent, Steady state current flow in solid binary electrolyte cells. J. Electroanal. Chem. Interfacial Electrochem. 225, 1 (1987).

    Article  CAS  Google Scholar 

  35. P. Bruce, Conductivity and transference number measurements on polymer electrolytes. Solid State Ion. 28–30, 918 (1988).

    Article  Google Scholar 

  36. K. Mishra, T. Arif, R. Kumar, and D. Kumar, Effect of Al2O3 nanoparticles on ionic conductivity of PVdF-HFP/PMMA blend-based Na+-ion conducting nanocomposite gel polymer electrolyte. J. Solid State Electrochem. 23, 2401 (2019).

    Article  CAS  Google Scholar 

  37. Harshlata, K. Mishra, and D.K. Rai, Studies on ionic liquid based nanocomposite gel polymer electrolyte and its application in sodium battery. Mater. Sci. Eng. B 267, 115098 (2021).

    Article  CAS  Google Scholar 

  38. R. Kumar, S.A. Ali, P. Singh, U. De, H.S. Virk, and R. Prasad, Physical and chemical response of 145MeV Ne6+ ion irradiated polymethylmethacrylate (PMMA) polymer. Nucl. Instrum. Methods Phys. Res. B 269, 1755 (2011).

    Article  CAS  Google Scholar 

  39. M.S. Gaur, P.K. Singh, A.P. Indolia, P.K. Yadav, A.A. Rogachev, and A.V. Rogachev, Improvement of dielectric properties of spin coated PMMA-ZnO nano hybrid thin film. Ferroelectrics 510, 56 (2017).

    Article  CAS  Google Scholar 

  40. M. Khairy, N.H. Amin, and R. Kamal, Optical and kinetics of thermal decomposition of PMMA/ZnO nanocomposites. J. Therm. Anal. Calorim. 128, 1811 (2017).

    Article  CAS  Google Scholar 

  41. X. Cai, T. Lei, D. Sun, and L. Lin, A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv. 7, 15382 (2017).

    Article  CAS  Google Scholar 

  42. R. Gregorio, and N. Chaves, Effect of PMMA addition on the solution crystallization of the alpha and beta phases of poly(vinylidene fluoride) (PVDF). J. Phys. D: Appl. Phys. 28, 432 (1995).

    Article  CAS  Google Scholar 

  43. D. Song, D. Yang, and Z. Feng, Formation of β phase microcrystals from the melt of PVF2-PIVIMA blends induced by quenching. J. Mater. Sci. 25, 57 (1990).

    Article  CAS  Google Scholar 

  44. N.H. Idris, M.M. Rahman, J.Z. Wang, and H.K. Liu, Microporous gel polymer electrolytes for lithium rechargeable battery application. J. Power Sources 201, 294 (2012).

    Article  CAS  Google Scholar 

  45. A.K. Jonscher, The ‘universal’ dielectric response. Nature 167, 673 (1977).

    Article  Google Scholar 

  46. K. Funke, Jump relaxation in solid electrolytes. Prog. Solid. State Chem. 22, 111 (1993).

    Article  CAS  Google Scholar 

  47. S.B. Aziz, O.G. Abdullah, S.R. Saeed, and H.M. Ahmed, Electrical and dielectric properties of copper ion conducting solid polymer electrolytes based on chitosan: CBH model for ion transport mechanism. Int. J. Electrochem. Sci. 13, 3812 (2018).

    Article  CAS  Google Scholar 

  48. A. Arya, and A.L. Sharma, Structural, electrical properties and dielectric relaxations in Na+ ion conducting solid polymer electrolyte. J. Phys. Condens. Matter 30, 165402 (2018).

    Article  Google Scholar 

  49. A.K. Chauhan, D. Kumar, K. Mishra, and A. Singh, Performance enhancement of Na+ ion conducting porous gel polymer electrolyte using NaAlO2 active filler. Mater. Today Commun. 26, 101713 (2021).

    Article  CAS  Google Scholar 

  50. S. Patra, P. Thakur, B. Soman, A.B. Puthirath, P.M. Ajayan, S. Mogurampelly, V.K. Chethan, and T.N. Narayanan, Mechanistic insight into the improved Li ion conductivity of solid polymer electrolytes. RSC Adv. 9, 38646 (2019).

    Article  CAS  Google Scholar 

  51. M. Kumar, T. Tiwari, J.K. Chauhan, and N. Srivastava, Understanding the ion dynamics and relaxation behavior from impedance spectroscopy of NaI doped zwitterionic polymer system. Mater. Res. Express 1, 045003 (2014).

    Article  Google Scholar 

  52. Y.Y. Wang, A.L. Agapov, F. Fan, K. Hong, X. Yu, J. Mays, and A.P. Sokolov, Decoupling of ionic transport from segmental relaxation in polymer electrolytes. Phys. Rev. Lett. 108, 088303 (2012).

    Article  Google Scholar 

  53. J. Song, Z. Yu, M.L. Gordin, X. Li, H. Peng, and D. Wang, Advanced sodium ion battery anode constructed via chemical bonding between phosphorus, carbon nanotube, and cross-linked polymer binder. J. Am. Chem. Soc. 9, 11933 (2015).

    CAS  Google Scholar 

  54. M. Dahbi, M. Fukunishi, T. Horiba, N. Yabuuchi, S. Yasuno, and S. Komaba, High performance red phosphorus electrode in ionic liquid-based electrolyte for Na-ion batteries. J. Power Sources 363, 404 (2017).

    Article  CAS  Google Scholar 

  55. Y. Liu, N. Zhang, X. Liu, C. Chen, L.Z. Fan, and L. Jiao, Red phosphorus nanoparticles embedded in porous N-doped carbon nanofibers as high-performance anode for sodium-ion batteries. Energy Storage Mater. 9, 170 (2017).

    Article  Google Scholar 

  56. J. Qian, X. Wu, Y. Cao, X. Ai, and H. Yang, High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew. Chem. 125, 4731 (2013).

    Article  Google Scholar 

  57. G. Ning, B. Haran, and B.N. Popov, Capacity fade study of lithium-ion batteries cycled at high discharge rates. J. Power Sources 117, 160 (2003).

    Article  CAS  Google Scholar 

  58. D. Zhang, B. Haran, A. Durairajan, R. White, Y. Podrazhansky, and B. Popov, Studies on capacity fade of lithium-ion batteries. J. Power Sources 91, 122 (2000).

    Article  CAS  Google Scholar 

  59. J.B. Goodenough, and Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22, 587 (2010).

    Article  CAS  Google Scholar 

  60. J.B. Goodenough, and K.S. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167 (2013).

    Article  CAS  Google Scholar 

  61. L. Qiao, X. Judez, T. Rojo, M. Armand, and H. Zhang, Polymer electrolytes for sodium batteries. J. Electrochem. Soc. 167, 070534 (2020).

    Article  CAS  Google Scholar 

  62. D. Linden, and T.B. Reddy, Handbook of Batteries, 3rd ed. (McGraw Hill, 2002).

    Google Scholar 

  63. J. Kang, D.Y. Kim, S.A. Chae, N. Saito, S.Y. Choi, and K.H. Kim, Maximization of sodium storage capacity of pure carbon material used in sodium-ion batteries. J. Mater. Chem. A 7, 16149 (2019).

    Article  CAS  Google Scholar 

  64. Y. Yu, F. Lu, N. Sun, A. Wu, W. Pan, and L. Zheng, Single lithium-ion polymer electrolytes based on poly(ionic liquid)s for lithium-ion batteries. Soft Matter 14, 6313 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support received from Science and Engineering Research Board, a statutory body of Department of Science and Technology, Government of India (File No: YSS/2015/001234), and research facilities provided by JIIT, Noida. One of us (Verma) is also thankful to JIIT, Noida, for providing research fellowship and research facilities to carry out this work.

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Rai.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent to Participate

All the authors agree to participate in this research communication.

Consent for Publication

The authors have consented to the submission of the manuscript to the journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, H., Mishra, K. & Rai, D.K. Microporous PVDF–PMMA Blend-Based Gel Polymer Electrolyte for Electrochemical Applications: Effect of PMMA on Electrochemical and Structural Properties. J. Electron. Mater. 51, 635–651 (2022). https://doi.org/10.1007/s11664-021-09314-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09314-8

Keywords

Navigation