Skip to main content
Log in

Improve the Formaldehyde Gas-Sensing Performance of 3D Porous SnO2 by Controlling the Calcination Time and the Amount of Holmium Doped

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Porous SnO2 with high sensitivity and fast response has attracted much attention. Herein, we prepared 3D porous SnO2 using carbon balls as a template and studied the effects of sintering time (1 h, 2 h, 3 h, 4 h) at a certain calcination temperature of 500℃ and Ho doping on the gas-sensing performance of 3D porous SnO2. The gas-sensing test results show that, compared with the samples obtained under other sintering time, the gas-sensing property of 3D porous SnO2 calcined for 2 h has the highest gas sensitivity of 31 in the 50-ppm formaldehyde environment. Among the samples doped with Ho, 3D porous SnO2 with a doping amount of 3.5% has the highest sensitivity of 65 at operating temperature of 230℃, which is twice as long as pure 3D porous SnO2 with a calcination time of 2 h. Moreover, the sample has good selectivity, low detection limit, and good linearity. These excellent gas-sensing characteristics are mainly due to the unique morphology of 3D porous SnO2, more oxygen vacancies, and the influence of Ho doping. Therefore, the gas-sensing performance of the metal oxide semiconductor material can be further improved by forming the porous nanocomposite material.

Graphical Abstract

(a) Response recovery time of SnO2 obtained under different calcination times;

(b) Response recovery time of SnO2 doped with different Ho content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Patil, P. Patil, V. Subramanian et al., Highly sensitive and fast responding CO sensor based on Co3O4 nanorods. Talanta 81, 37 (2010).

    Article  CAS  Google Scholar 

  2. J.H. Bang, M.S. Choi, A. Mirzaei et al., Porous Si/SnO2 nanowires heterostructures for H2S gas sensing. Ceram. Int. 46, 604 (2020).

    Article  CAS  Google Scholar 

  3. W. Zhang, Q. Li, C. Wang et al., High sensitivity and selectivity chlorine gas sensors based on 3D open porous SnO2 synthesized by solid-state method. Ceram. Int. 45, 20566 (2019).

    Article  CAS  Google Scholar 

  4. C. Tian, H. Guo, H. Li et al., Constructing 3D porous SnO2 nanomaterials for enhanced formaldehyde sensing performances. J. Mater. Sci.: Mater. Electron. 31, 14174 (2020).

    CAS  Google Scholar 

  5. H.-J. Cho, S.-J. Choi, N.-H. Kim, and I.-D. Kim, Porosity controlled 3D SnO2 spheres via electrostatic spray: Selective acetone sensors. Sens. Actuators B-Chem. 304, 127350 (2020).

    Article  CAS  Google Scholar 

  6. R. Niemela, and H. Vainio, Formaldehyde exposure in work and the general environment. Occurrence and possibilities for prevention. Scand. J Work Environ Health 7, 95 (1981).

    Article  CAS  Google Scholar 

  7. Xia C. Discussion on indoor formaldehyde treatment. In: Sustainable Environment and Transportation, Pts 1-4. Edited by: Chu MJ, Xu HH, Jia Z et al. 2012. pp. 280-283.

  8. P. Gao, X.-Y. Sun, B. Liu et al., Cu MOF-based catalytic sensing for formaldehyde. J. Mater. Chem. C 6, 8105 (2018).

    Article  CAS  Google Scholar 

  9. F. Ren, L. Gao, Y. Yuan et al., Enhanced BTEX gas-sensing performance of CuO/SnO2 composite. Sens. Actuators B-Chem. 223, 914 (2016).

    Article  CAS  Google Scholar 

  10. T.Y. Ho, J.-W. Huang, B.-C. Peng et al., Liquid crystal-based sensor system for detecting formaldehyde in aqueous solutions. Microchem. J. 158, 105235 (2020).

    Article  CAS  Google Scholar 

  11. K. Khojier, Preparation and investigation of Al-doped ZnO thin films as a formaldehyde sensor with extremely low detection limit and considering the effect of RH. Mater. Sci. Semiconduct. Process. 121, 105283 (2021).

    Article  CAS  Google Scholar 

  12. L. Xu, M. Ge, F. Zhang et al., Nanostructured of SnO2/NiO composite as a highly selective formaldehyde gas sensor. J. Mater. Res. 35, 3079 (2020).

    Article  CAS  Google Scholar 

  13. L. Liu, S. Li, X. Guo et al., Excellent performance of gas sensor based on In2O3-Fe2O3 nanotubes. J. Semiconduct. 37, 013005 (2016).

    Article  Google Scholar 

  14. X. Xu, J. Sun, H. Zhang et al., Effects of Al doping on SnO2 nanofibers in hydrogen sensor. Sens. Actuators B-Chem. 160, 858 (2011).

    Article  CAS  Google Scholar 

  15. S.-W. Choi, A. Katoch, G.-J. Sun, and S.S. Kim, Synthesis and gas sensing performance of ZnO-SnO2 nanofiber-nanowire stem-branch heterostructure. Sens. Actuators B-Chem. 181, 787 (2013).

    Article  CAS  Google Scholar 

  16. L. Xu, R. Xing, J. Song et al., ZnO-SnO2 nanotubes surface engineered by Ag nanoparticles: synthesis, characterization, and highly enhanced HCHO gas sensing properties. J. Mater. Chem. C 1, 2174 (2013).

    Article  CAS  Google Scholar 

  17. J. Zhang, X. Liu, L. Wang et al., Synthesis and gas sensing properties of alpha-Fe2O3@ZnO core-shell nanospindles. Nanotechnology 22, 18550 (2011).

    Google Scholar 

  18. P.N. Anantharamaiah, and S. Giri, Enhancement of SO2 gas sensing performance of Co3O4 spinel by Cu substitution. Sens. Lett. 18, 83 (2020).

    Article  Google Scholar 

  19. J. Ma, H. Fan, W. Zhang et al., High sensitivity and ultra-low detection limit of chlorine gas sensor based on In2O3 nanosheets by a simple template method. Sens. Actuators B Chem. 305, 127456 (2020).

    Article  CAS  Google Scholar 

  20. X. Zeng, Z. Wang, Y. Li et al., Highly sensitive and selective formaldehyde gas sensor based on CdO-In2O3 beaded porous nanotubes at low temperature. J. Mater. Sci. Mater. Electron. 29, 17533–17541 (2018).

    Article  CAS  Google Scholar 

  21. J. Kim, J.-H. Yun, and C.-S. Han, Nanomaterial-embedded gas sensor fabrication. Curr. Appl. Phys. 9, e38–e41 (2009).

    Article  Google Scholar 

  22. Y. Xu, L. Zheng, C. Yang et al., Highly sensitive and selective electronic sensor based on Co catalyzed SnO2 nanospheres for acetone detection. Sens. Actuators B-Chem. 304, 127237 (2020).

    Article  CAS  Google Scholar 

  23. J. Fan, L. Zhao, J. Yu, and G. Liu, The effect of calcination temperature on the microstructure and photocatalytic activity of TiO2-based composite nanotubes prepared by an in situ template dissolution method. Nanoscale 4, 6597 (2012).

    Article  CAS  Google Scholar 

  24. M. Zhu, T. Yang, C. Zhai et al., Fast triethylamine gas sensing response properties of Ho-doped SnO2 nanoparticles. J. Alloys Compd. 817, 152724 (2020).

    Article  CAS  Google Scholar 

  25. K. Suematsu, H. Uchino, T. Mizukami et al., Oxygen adsorption on ZrO2-loaded SnO2 gas sensors in humid atmosphere. J. Mater. Sci. 54, 3135 (2019).

    Article  CAS  Google Scholar 

  26. L.-L. Li, W.-M. Zhang, Q. Yuan et al., Room temperature ionic liquids assisted green synthesis of nanocrystalline porous SnO2 and their gas sensor behaviors. Cryst. Growth Des. 8, 4165 (2008).

    Article  CAS  Google Scholar 

  27. B. Zheng, S. Wu, X. Yang et al., Room temperature CO oxidation over Pt/MgFe2O4: a stable inverse spinel oxide support for preparing highly efficient Pt catalyst. ACS Appl. Mater. Interfaces 8, 26683 (2016).

    Article  CAS  Google Scholar 

  28. T. Zhou, G. Zhang, H. Yang et al., Fabrication of Ag3PO4/GO/NiFe2O4 composites with highly efficient and stable visible-light-driven photocatalytic degradation of rhodamine B. RSC Adv. 8, 28179 (2018).

    Article  CAS  Google Scholar 

  29. Z. Yan, J. Gao, Y. Li et al., Hydrothermal synthesis and structure evolution of metal-doped magnesium ferrite from saprolite laterite. RSC Adv. 5, 92778 (2015).

    Article  CAS  Google Scholar 

  30. R. Zhang, Z. Xu, T. Zhou et al., Improvement of gas sensing performance for tin dioxide sensor through construction of nanostructures. J. Colloid Interface Sci. 557, 673 (2019).

    Article  CAS  Google Scholar 

  31. G.H. Jain, L.A. Patil, and V.B. Gaikwad, Studies on gas sensing performance of (Ba0.8Sr0.2)(Sn0.8Ti0.2)O-3. Sensors Actuators B-Chem. 122, 605 (2007).

    Article  CAS  Google Scholar 

  32. N.-H. Kim, S.-J. Choi, S.-J. Kim et al., Highly sensitive and selective acetone sensing performance of WO3 nanofibers functionalized by Rh2O3 nanoparticles. Sens. Actuators B-Chem. 224, 185 (2016).

    Article  CAS  Google Scholar 

  33. V. Kruefu, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, Ultra-sensitive H2S sensors based on hydrothermal/impregnation-made Ru-functionalized WO3 nanorods. Sens. Actuators B-Chem. 215, 630 (2015).

    Article  CAS  Google Scholar 

  34. P. Rai, S.M. Majhi, Y.-T. Yu, and J.-H. Lee, Noble metal@metal oxide semiconductor core@shell nano-architectures as a new platform for gas sensor applications. RSC Adv. 5, 76229 (2015).

    Article  CAS  Google Scholar 

  35. C. Wang, L. Yin, L. Zhang et al., Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10, 2088–2106 (2010).

    Article  CAS  Google Scholar 

  36. L. Song, B. Zhao, X. Ju et al., Comparative study of methanol gas sensing performance for SnO2 nanostructures by changing their morphology. Mater. Sci. Semiconduct. Process. 111, 1049 (2020).

    Article  Google Scholar 

  37. L. Wu, L. Zhang, Z. Xun et al., Effect of growth temperature and time on morphology and gas sensitivity of Cu2O/Cu microstructures. J Nanomater 2016, 1 (2016).

    Google Scholar 

  38. J. Hu, H. Wang, M. Chen et al., Constructing hierarchical SnO2 nanoflowers for enhanced formaldehyde sensing performances. Mater. Lett. 263, 126843 (2020).

    Article  CAS  Google Scholar 

  39. H. Duan, Y. Wang, S. Li et al., Controllable synthesis of Ho-doped In2O3 porous nanotubes by electrospinning and their application as an ethanol gas sensor. J. Mater. Sci. 53, 3267 (2018).

    Article  CAS  Google Scholar 

  40. Y. Zhang, S. Guo, and Z. Zheng, Nanocrystalline Ho3+-doped WO3: a promising material for acetone detection. J. Exp. Nanosci. 8, 184 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, C., Tian, Xa., Li, Y. et al. Improve the Formaldehyde Gas-Sensing Performance of 3D Porous SnO2 by Controlling the Calcination Time and the Amount of Holmium Doped. J. Electron. Mater. 51, 214–222 (2022). https://doi.org/10.1007/s11664-021-09279-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09279-8

Keywords

Navigation