Skip to main content
Log in

Polycrystalline Erbium Phthalocyanine Thin Films Deposited on Silicon and Porous Silicon by Ultrasonic Spray Pyrolysis: Optical, Morphological, and Electrical Characterizations

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Conventional inorganic semiconductors are the basis of modern electronics but their properties limit performance for certain applications. Two relevant applications for which these materials are not suitable are: (1) non-planar or flexible devices and (2) large-area prototypes. This limitation has driven the research of a new generation of thin film organic semiconductor materials that can be incorporated in hybrid heterostructures. These materials can be deposited on different substrates at low temperatures and at low cost, from a solution by using a simple method such as spin-coating. Here, we report the development of a low-cost ultrasonic spray pyrolysis (USP) instrument to obtain, by a simple and efficient technique, erbium phthalocyanine (ErPc) polycrystalline thin films incorporated into the Al/c-Si/ErPc/Ni and Al/c-Si/PS/ErPc/Ni heterostructures and their concomitant characterization. For the formation of the porous silicon (PS) layer and the deposition of the ErPc material, metal-assisted chemical etching (MACE) and USP were respectively used. The morphological, optical, and electrical properties were studied thoroughly. FE-SEM micrographs show a noteworthy result; non-agglomerated nanosphere particles were obtained on the c-Si substrates in contrast with the PS layer, where agglomerations are pretty apparent to the sight. Different equations were tested to find the transport mechanism in the heterostructures and the best fit was for the space charge limited current (SCLC) type. Finally, current–time (IT) measurements were carried out to gain insight into the photocurrent effects. These results show a photo-response with a reverse polarization, and this can be applied for the design of organic hybrid heterostructures in photo-sensor applications.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Ahmad, Organic semiconductors for device applications: current trends and future prospects. J. Polym. Eng. 34, 279 (2014).

    Article  CAS  Google Scholar 

  2. J. Cornil, J.P. Calbert, D. Beljonne, R. Silbey, and J.-L. Brédas, Charge transport versus optical properties in semiconducting crystalline organic thin films. Adv. Mater. 12, 978 (2000).

    Article  CAS  Google Scholar 

  3. M. Turbiez, P. Frère, M. Allain, C. Videlot, J. Ackermann, and J. Roncali, Design of organic semiconductors: tuning the electronic properties of π-conjugated oligothiophenes with the 3,4-ethylenedioxythiophene (EDOT) building block. Chem. A Eur. J. 11, 3742 (2005).

    Article  CAS  Google Scholar 

  4. J. Li and J.Z. Zhang, Optical properties and applications of hybrid semiconductor nanomaterials. Coord. Chem. Rev. 253, 3015 (2009).

    Article  CAS  Google Scholar 

  5. A.R. Zanatta, Revisiting the optical bandgap of semiconductors and the proposal of a unified methodology to its determination. Sci. Rep. 9, 11225 (2019).

    Article  CAS  Google Scholar 

  6. T. Furuyama, K. Satoh, T. Kushiya, and N. Kobayashi, Design, synthesis, and properties of phthalocyanine complexes with main-group elements showing main absorption and fluorescence beyond 1000 nm. J. Am. Chem. Soc. 136, 765 (2014).

    Article  CAS  Google Scholar 

  7. R.D. Gould, Structure and electrical conduction properties of phthalocyanine thin films. Coord. Chem. Rev. 156, 237 (1996).

    Article  CAS  Google Scholar 

  8. U. Weiler, K. Schwanitz, C. Kelting, D. Schlettwein, D. Wöhrle, T. Mayer, and W. Jaegermann, Phthalocyanines incorporated into hot wire-CVD grown silicon. Thin Solid Films 511–512, 172 (2006).

    Article  Google Scholar 

  9. M. Benhaliliba, A growth of A–Z phthalocyanine layers onto Si by thermal evaporation process to achieve organic heterojunction diodes. Optik (Stuttgart) 217, 164832 (2020).

    Article  CAS  Google Scholar 

  10. C. Locovei, D. Coman, A. Radu, L. Ion, V.A. Antohe, N. Vasile, A. Dumitru, S. Iftimie, and S. Antohe, Physical properties of Cu and Dy co-doped ZnO thin films prepared by radio frequency magnetron sputtering for hybrid organic/inorganic electronic devices. Thin Solid Films 685, 379 (2019).

    Article  CAS  Google Scholar 

  11. T. Higashi, M. Fiderana Ramananarivo, M. Ohmori, H. Yoshida, A. Fujii, and M. Ozaki, Macroscopically aligned molecular stacking structures in mesogenic phthalocyanine derivative films fabricated by heated spin-coating method. Thin Solid Films 594, 1 (2015).

    Article  CAS  Google Scholar 

  12. S.H. Choi and Y.C. Kang, Fe3O4-decorated hollow graphene balls prepared by spray pyrolysis process for ultrafast and long cycle-life lithium ion batteries. Carbon N. Y. 79, 58 (2014).

    Article  CAS  Google Scholar 

  13. J. Leng, Z. Wang, J. Wang, H.-H. Wu, G. Yan, X. Li, H. Guo, Y. Liu, Q. Zhang, and Z. Guo, Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion. Chem. Soc. Rev. 48, 3015 (2019).

    Article  CAS  Google Scholar 

  14. B. Tatar, D. Demiroglu, and M. Ürgen, Investigation of structural and electrical properties of p-CuPc/c-Si and p-CuPc/a-Si/c-Si hybrid photodiodes prepared by CSP technique. Microelectron. Eng. 126, 184 (2014).

    Article  CAS  Google Scholar 

  15. K.G. Deepa and N. Jampana, Development of an automated ultrasonic spray pyrolysis system and the growth of Cu2ZnSnS4 thin films. J. Anal. Appl. Pyrolysis 117, 141 (2016).

    Article  Google Scholar 

  16. Y.L. Song, S.C. Tsai, C.Y. Chen, T.K. Tseng, C.S. Tsai, J.W. Chen, and Y.D. Yao, Ultrasonic spray pyrolysis for synthesis of spherical zirconia particles. J. Am. Ceram. Soc. 87, 1864 (2005).

    Article  Google Scholar 

  17. R. Romero, J.R. Ramos-Barrado, F. Martin, and D. Leinen, Nb2O5 thin films obtained by chemical spray pyrolysis. Surf. Interface Anal. 36, 888 (2004).

    Article  CAS  Google Scholar 

  18. J.H. Bang and K.S. Suslick, Applications of ultrasound to the synthesis of nanostructured materials. Adv. Mater. 22, 1039 (2010).

    Article  CAS  Google Scholar 

  19. A. Garzon-Roman, C. Zuñiga-Islas, and E. Quiroga-González, Immobilization of doped TiO2 nanostructures with Cu or In inside of macroporous silicon using the solvothermal method: morphological, structural, optical and functional properties. Ceram. Int. 46, 1137 (2020).

    Article  CAS  Google Scholar 

  20. J.L. Sosa Sanchéz, J.G. Pérez Luna, A. Sosa Sánchez, and L. Ortega Jiméne, Proceso de Síntesis Solar a Escala de Laboratorio de Compuestos Macrocíclicos Funcionales Usando Radiación de Un Prototipo de Concentración Media Tipo Fresnel, MX/E/2012/024089 (2012)

  21. S. Bo, D. Tang, X. Liu, and Z. Zhen, Synthesis, spectroscopic properties and electrochemistry of (2,9,16,23-tetrasubstituted phthalocyaninato) erbium complexes. Dyes Pigments 76, 35 (2008).

    Article  Google Scholar 

  22. A.V. Ziminov, S.M. Ramsh, E.I. Terukov, I.N. Trapeznikova, V.V. Shamanin, and T.A. Yurre, Correlation dependences in infrared spectra of metal phthalocyanines. Semiconductors 40, 1131 (2006).

    Article  CAS  Google Scholar 

  23. A. Garzon-Roman, D.H. Cuate-Gomez, C. Zuñiga-Islas, J.L. Sosa-Sanchez, and F. Lopez-Huerta, Erbium phthalocyanine on porous silicon: morphological, optical, and electrical characterization, for its possible application as a photodetector. Sens. Actuators A Phys. 315, 112309 (2020).

    Article  CAS  Google Scholar 

  24. V. Dhayal, S.Z. Hashmi, U. Kumar, B.L. Choudhary, A.E. Kuznetsov, S. Dalela, S. Kumar, S. Kaya, S.N. Dolia, and P.A. Alvi, Spectroscopic studies, molecular structure optimization and investigation of structural and electrical properties of novel and biodegradable chitosan-GO polymer nanocomposites. J. Mater. Sci. 55, 14829 (2020).

    Article  CAS  Google Scholar 

  25. J. Zhang, Y. Li, Y. Tang, X. Luo, L. Sun, F. Zhao, J. Zhong, and Y. Peng, Airstable near-infrared sensitive organic field-effect transistors utilizing erbium phthalocyanine as photosensitive layer. Synth. Met. 218, 27 (2016).

    Article  CAS  Google Scholar 

  26. A.E. Jailaubekov, A.P. Willard, J.R. Tritsch, W.-L. Chan, N. Sai, R. Gearba, L.G. Kaake, K.J. Williams, K. Leung, P.J. Rossky, and X.-Y. Zhu, Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics. Nat. Mater. 12, 66 (2013).

    Article  CAS  Google Scholar 

  27. R. Zugle, C. Litwinski, and T. Nyokong, Photophysical characterization of dysprosium, erbium and lutetium phthalocyanines tetrasubstituted with phenoxy groups at non-peripheral positions. Polyhedron 30, 1612 (2011).

    Article  CAS  Google Scholar 

  28. N. Padma, S. Arora, P. Survaiya, D. Bhattacharya, S. Choudhury, and M. Roy, Porous silicon-copper phthalocyanine heterostructure based photoelectrochemical cell. Appl. Surf. Sci. 428, 463 (2018).

    Article  Google Scholar 

  29. Z. ALOthman, A review: fundamental aspects of silicate mesoporous materials. Materials (Basel) 5, 2874 (2012).

    Article  CAS  Google Scholar 

  30. J.-H. Park, L. Gu, G. von Maltzahn, E. Ruoslahti, S.N. Bhatia, and M.J. Sailor, Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater. 8, 331 (2009).

    Article  CAS  Google Scholar 

  31. A. Baran, S. Çol, E. Karakılıç, and F. Özen, Photophysical, photochemical and DNA binding studies of prepared phthalocyanines. Polyhedron 175, 114205 (2020).

    Article  Google Scholar 

  32. C.N. Savory, A.M. Ganose, W. Travis, R.S. Atri, R.G. Palgrave, and D.O. Scanlon, An assessment of silver copper sulfides for photovoltaic applications: theoretical and experimental insights. J. Mater. Chem. A 4, 12648 (2016).

    Article  CAS  Google Scholar 

  33. S. Moharana, T. Yadav, P.A. Alvi, A. Pathak, and R.N. Mahaling, Enhanced dielectric and electrical properties of tri-phase percolative PVDF-BiFeO3-carbon black (CB) composite film. J. Mater. Sci. Mater. Electron. 32, 6038 (2021).

    CAS  Google Scholar 

  34. V. Dhayal, S.Z. Hashmi, U. Kumar, B.L. Choudhary, S. Dalela, S.N. Dolia, and P.A. Alvi, Optical and electrical properties of biocompatible and novel (CS-GO) polymer nanocomposites. Opt. Quantum Electron. 53, 53 (2021).

    Article  CAS  Google Scholar 

  35. D.D. Blach, W. Zheng, H. Liu, A. Pan, and L. Huang, Carrier transport across a CdSxSe1–x lateral heterojunction visualized by ultrafast microscopy. J. Phys. Chem. C 124, 11325 (2020).

    Article  CAS  Google Scholar 

  36. S. Alfadhli, H.A.M. Ali, E.F.M. El-Zaidia, R.A.S. Alatawi, A.A.A. Darwish, and I.S. Yahia, Effect of thickness on structural and optical characteristics of indium phthalocyanine chloride thin films for photodiode devices. J. Mater. Sci. Mater. Electron. 32, 1907 (2021).

    Article  CAS  Google Scholar 

  37. H.M. El-Mallah, M. Abd-El Salam, E. Elesh, and D.G. El-Damhogi, Thermal annealing effect on the structural and optical characteristics of silicon phthalocyanine dichloride thin films. Optik (Stuttgart) 200, 163459 (2020).

    Article  CAS  Google Scholar 

  38. E. Elesh and Z. Mohammed, Morphological, linear and nonlinear properties of gallium phthalocyanine chloride annealed thin films. Optik (Stuttgart) 219, 165176 (2020).

    Article  CAS  Google Scholar 

  39. K.K. Khichar, S.B. Dangi, V. Dhayal, U. Kumar, S.Z. Hashmi, V. Sadhu, B.L. Choudhary, S. Kumar, S. Kaya, A.E. Kuznetsov, S. Dalela, S.K. Gupta, and P.A. Alvi, Structural, optical, and surface morphological studies of ethyl cellulose/graphene oxide nanocomposites. Polym. Compos. 41, 2792 (2020).

    Article  CAS  Google Scholar 

  40. P. Makuła, M. Pacia, and W. Macyk, How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. J. Phys. Chem. Lett. 9, 6814 (2018).

    Article  Google Scholar 

  41. Y.S. Zhang, D.X. Wang, Z.Y. Wang, and Y.Y. Wang, Photocurrent multiplication characteristics of zinc phthalocyanine organic thin film transistor. Opt. Quantum Electron. 48, 18 (2016).

    Article  Google Scholar 

  42. Y. Zhang, D.X. Wang, J. Bin Chen, Y. Shan, J.H. Yin, and H. Zhao, The photocurrent characteristic analysis of the copper phthalocyanine organic thin film transistor irradiated by 700 nm monochromatic light. Adv. Mater. Res. 981, 951 (2014).

    Article  Google Scholar 

  43. R. Prabakaran, E. Fortunato, R. Martins, and I. Ferreira, Fabrication and characterization of hybrid solar cells based on copper phthalocyanine/porous silicon. J. Non Cryst. Solids 354, 2892 (2008).

    Article  CAS  Google Scholar 

  44. V.V. Mitic, V. Paunovic, J. Purenovic, S. Jankovic, L. Kocic, I. Antolovic, and D. Rancic, The contribution of fractal nature to BaTiO3-ceramics microstructure analysis. Ceram. Int. 38, 1295 (2012).

    Article  CAS  Google Scholar 

  45. J.-H. Choi, S.N. Das, K.-J. Moon, J.P. Kar, and J.-M. Myoung, Fabrication and characterization of p-Si nanowires/ZnO film heterojunction diode. Solid State Electron. 54, 1582 (2010).

    Article  CAS  Google Scholar 

  46. M. Tzolov, B. Chang, A. Yin, D. Straus, J.M. Xu, and G. Brown, Electronic transport in a controllably grown carbon nanotube-silicon heterojunction array. Phys. Rev. Lett. 92, 075505 (2004).

    Article  CAS  Google Scholar 

  47. N. Wan, L. Sun, S. Ding, T. Xu, X. Hu, J. Sun, and H. Bi, Synthesis of graphene-CNT hybrids via joule heating: structural characterization and electrical transport. Carbon N. Y. 53, 260 (2013).

    Article  CAS  Google Scholar 

  48. Z. Çaldıran, M. Şinoforoğlu, Ö. Metin, Ş Aydoğan, and K. Meral, Space charge limited current mechanism (SCLC) in the graphene oxide-Fe3O4 nanocomposites/n-Si heterojunctions. J. Alloys Compd. 631, 261 (2015).

    Article  Google Scholar 

  49. H. Ali, U. Khan, M.A. Rafiq, A. Falak, A. Narain, T. Jing, and X. Xu, Richardson–Schottky transport mechanism in ZnS nanoparticles. AIP Adv. 6, 055306 (2016).

    Article  Google Scholar 

  50. C. Singh, S.B. Narang, M. Jaroszewski, V. Bhikan, and P. Kaur, Schottky–Richardson, Poole–Frenkel, and space charge limited current mechanisms in M-Type Sr(MnTi)xFe(12–2x)O19 ferrite. J. Am. Ceram. Soc. 99, 3639 (2016).

    Article  CAS  Google Scholar 

  51. R.G. Forbes, Physics of generalized Fowler–Nordheim-type equations. J. Vac. Sci. Technol. B Microelectron. Nanomater. Struct. 26, 788 (2008).

    Article  CAS  Google Scholar 

  52. K.A. Miller, R.D. Yang, M.J. Hale, J. Park, B. Fruhberger, C.N. Colesniuc, I.K. Schuller, A.C. Kummel, and W.C. Trogler, Electrode independent chemoresistive response for cobalt phthalocyanine in the space charge limited conductivity regime. J. Phys. Chem. B 110, 361 (2006).

    Article  CAS  Google Scholar 

  53. A. Kumar, A. Singh, S. Samanta, R. Prasad, A.K. Debnath, D.K. Aswal, and S.K. Gupta, Trap free space charge limited conduction and high mobility in cobalt phthalocyanine-iron phthalocyanine composite thin films. Solid State Phenom. 209, 52 (2013).

    Article  CAS  Google Scholar 

  54. G. Cucinotta, L. Poggini, N. Giaconi, A. Cini, M. Gonidec, M. Atzori, E. Berretti, A. Lavacchi, M. Fittipaldi, A.I. Chumakov, R. Rüffer, P. Rosa, and M. Mannini, Space charge-limited current transport mechanism in crossbar junction embedding molecular spin crossovers. ACS Appl. Mater. Interfaces 12, 31696 (2020).

    Article  CAS  Google Scholar 

  55. M.A. Vasquez, G. Romero Paredes, and R. Pena Sierra, Estudio Del Mecanismo de Transporte En Películas de Silicio Poroso. Superf. Vacío 24, 5 (2011).

    Google Scholar 

  56. J.Y. Yun, W.C. Lee, S.W. Choi, and Y.J. Park, Featuring of transient tunneling current by voltage pulse and application to an electrochemical biosensor. J. Appl. Phys. 123, 124902 (2018).

    Article  Google Scholar 

  57. Q. Zafar, N. Fatima, K.S. Karimov, M.M. Ahmed, and K. Sulaiman, Realizing broad-bandwidth visible wavelength photodiode based on solution-processed ZnPc/PC71BM dyad. Opt. Mater. (Amsterdam) 64, 131 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank CONACYT for its financial support through scholarship numbers 700475 and 568124. We are also thankful to the Instituto Nacional de Astrofisica Optica y Electronica (INAOE) for the SEM and IV, IT measurements, and the Instituto de Física (IFUAP) for the measurements of diffuse reflectance. Finally, we express our gratitude to the Instituto de Química de la UNAM for the mass spectrometry analysis of ErPc.

Author information

Authors and Affiliations

Authors

Contributions

DHCG and AGR carried out the implementation of the experimental set-up, the characterization tests and wrote the manuscript, JLSS, CZI and MAD supervised the study and made the corresponding corrections to the manuscript.

Corresponding author

Correspondence to D. H. Cuate-Gomez.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuate-Gomez, D.H., Garzon-Roman, A., Sosa-Sánchez, J.L. et al. Polycrystalline Erbium Phthalocyanine Thin Films Deposited on Silicon and Porous Silicon by Ultrasonic Spray Pyrolysis: Optical, Morphological, and Electrical Characterizations. J. Electron. Mater. 50, 6951–6963 (2021). https://doi.org/10.1007/s11664-021-09264-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09264-1

Keywords

Navigation