Skip to main content
Log in

Sakura Derived Hierarchical Porous Carbons As a High-Performance Cathode Host for Lithium-Sulfur Batteries

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Sakura petals were collected as raw materials for the manufacture of porous carbon hosts for use as cathodes in lithium-sulfur (Li-S) batteries by a direct pyrolysis method and chemical activation process. The evolution of the morphology and microstructure of sakura petal-derived carbon materials was investigated in detail. Furthermore, the electrochemical performance of Li-S batteries assembled from composite cathodes with sakura petal-derived carbon products as the host and pure sulfur as the active material were systematically researched. The results indicated that the morphology of the products changed from a plate-like morphology to plates with ordered grooves and then to a wrinkled sheet-like morphology. In addition, many micropores were formed during the activation process. Moreover, the sample that underwent two-step activation exhibited an improved specific discharging capacity, cycling performance and rate performance. In summary, the sakura-derived carbon host is expected to assist in the future application of Li-S batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.L. Ye, and J.Y. Lee, Solid additives for improving the performance of sulfur cathodes in lithium–sulfur batteries–adsorbents, mediators, and catalysts. Small Methods 4, 2633 (2020).

    Article  Google Scholar 

  2. Y. Sun, N. Liu, and Y. Cui, Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 7, 1 (2016).

    Google Scholar 

  3. T. Shi, C. Zhao, Y. Zhou, H. Yin, C. Song, L. Qin, Z. Wang, H. Shao, and K. Yu, A special core-shell ZnS-CNTs/S@NH cathode constructed to elevate electrochemical performances of lithium-sulfur batteries. J. Colloid Interface Sci. 599, 416 (2021).

    Article  CAS  Google Scholar 

  4. Y. Yu, Z. Zhan, P. Tang, Q. Xu, Q. Fan, W. Wang, and K. Shen, Promoting polysulfide redox kinetics by Co9S8 nanoparticle-embedded in N-doped carbon nanotube hollow polyhedron for lithium sulfur batteries. J. Alloys Compd. 869, 159306 (2021).

    Article  CAS  Google Scholar 

  5. H. Zhang, S. Wang, Y. Wang, B. Huang, Y. Dai, and W. Wei, Borophosphene: A potential anchoring material for lithium-sulfur batteries. Appl. Surf. Sci. 562, 150157 (2021).

    Article  CAS  Google Scholar 

  6. D. Guo, C. Zheng, W. Deng, X.A. Chen, H. Wei, M. Liu, and S. Huang, Nitrogen-doped porous carbon plates derived from fallen camellia flower for electrochemical energy storage. J. Solid State Electrochem. 21, 1165 (2016).

    Article  Google Scholar 

  7. G. Yang, Z. Zhang, Z. Zhang, L. Zhang, Y. Xue, J. Yang, and C. Peng, Rational construction of well-defined hollow double shell SnO2/mesoporous carbon spheres heterostructure for supercapacitors. J. Alloys Compd. 873, 159810 (2021).

    Article  CAS  Google Scholar 

  8. Y.-Q. Wang, Y.-S. Zhao, X.-X. Yang, M.-X. Ren, B.-Y. Lei, W.-J. Meng, and D.-L. Zhao, Graphene nanosheet@spherical ordered mesoporous carbon/sulfur nanocomposites as cathode material for high-performance lithium-sulfur batteries. Int. J. Hydrogen Energy. 45, 32654 (2020).

    Article  CAS  Google Scholar 

  9. D. Sun, J. Zhou, D. Rao, L. Zhu, S. Niu, J. Cai, Y. Fang, Y. Liu, X. Liu, Y. Zang, Y. Wu, Y. Xie, Z. Zhu, D. Niu, Z. Lu, Z. Pei, and G. Wang, Regulating the electron filling state of d orbitals in Ta-based compounds for tunable lithium-sulfur chemistry. Sustain. Mater Tech. 28, 271 (2021).

    Google Scholar 

  10. N. Yamsang, J. Sittiwong, P. Srifa, B. Boekfa, M. Sawangphruk, T. Maihom, and J. Limtrakul, First-principle study of lithium polysulfide adsorption on heteroatom doped graphitic carbon nitride for lithium–sulfur batteries. Appl. Surf. Sci. 21, 150378 (2021).

    Article  Google Scholar 

  11. C. Schneidermann, C. Kensy, P. Otto, S. Oswald, L. Giebeler, D. Leistenschneider, S. Gratz, S. Dorfler, S. Kaskel, and L. Borchardt, Nitrogen-doped biomass-derived carbon formed by mechanochemical synthesis for lithium–sulfur batteries. Chemsuschem 12, 310 (2019).

    Article  CAS  Google Scholar 

  12. H. Li, F. Shen, W. Luo, J. Dai, X. Han, Y. Chen, Y. Yao, H. Zhu, K. Fu, E. Hitz, and L. Hu, Carbonized-leaf membrane with anisotropic surfaces for sodium-ion battery. ACS Appl. Mater. Interfaces. 8, 2204 (2016).

    Article  CAS  Google Scholar 

  13. Y. Ma, H. Zhang, B. Wu, M. Wang, X. Li, and H. Zhang, Lithium sulfur primary battery with super high energy density: based on the cauliflower-like structured C/S cathode. Sci. Rep. 5, 14949 (2015).

    Article  CAS  Google Scholar 

  14. Y. Wang, R. Zhang, J. Chen, H. Wu, S. Lu, K. Wang, H. Li, C.J. Harris, K. Xi, R.V. Kumar, and S. Ding, Enhancing catalytic activity of titanium oxide in lithium–sulfur batteries by band engineering. Adv. Eng. Mater. 9, 953 (2019).

    Google Scholar 

  15. F. Wang, D. Ouyang, Z. Zhou, S.J. Page, D. Liu, and X. Zhao, Lignocellulosic biomass as sustainable feedstock and materials for power generation and energy storage. J. Energy Chem. 57, 247 (2021).

    Article  Google Scholar 

  16. H. Zhu, Z. Jia, Y. Chen, N. Weadock, J. Wan, O. Vaaland, X. Han, T. Li, and L. Hu, Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. Nano Lett. 13, 3093 (2013).

    Article  CAS  Google Scholar 

  17. B. Liu, M. Yang, H. Chen, Y. Liu, D. Yang, and H. Li, Graphene-like porous carbon nanosheets derived from salvia splendens for high-rate performance supercapacitors. J. Power Sources. 397, 1 (2018).

    Article  CAS  Google Scholar 

  18. S. Chen, Y. Zhang, Y. Li, W. Liu, Y. Song, and L. Wang, Porous carbon derived from petals of Yulan magnolia doped with Ni and NiO as anodes for lithium ion battery. Int. J. Electrochem. Sci. 14, 1926 (2019).

    Article  CAS  Google Scholar 

  19. F. Ma, S. Ding, H. Ren, and Y. Liu, Sakura-based activated carbon preparation and its performance in supercapacitor applications. RSC Adv. 9, 2474 (2019).

    Article  CAS  Google Scholar 

  20. D. Liu, Q. Li, J. Hou, and H. Zhao, Porous 3D graphene-based biochar materials with high areal sulfur loading for lithium–sulfur batteries. Sustain. Energy Fuels 2, 2197 (2018).

    Article  CAS  Google Scholar 

  21. Y. Gong, D. Li, C. Luo, Q. Fu, and C. Pan, Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chem. 19, 4132 (2017).

    Article  CAS  Google Scholar 

  22. G. Zhou, L.C. Yin, D.W. Wang, L. Li, S. Pei, I.R. Gentle, F. Li, and H.M. Cheng, Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium–sulfur batteries. ACS Nano 7, 5367 (2013).

    Article  CAS  Google Scholar 

  23. Q. Dong, F. Zhang, S. Ji, X. Wang, H. Wang, V. Linkov, and R. Wang, Fe3C-inserted “tube plugging into porous network” nanohybrids as advanced sulfur hosts for lithium-sulfur batteries. J. Alloys Compd. 877, 160286 (2021).

    Article  CAS  Google Scholar 

  24. H. Zhang, L. Yang, P. Zhang, C. Lu, D. Sha, B. Yan, W. He, M. Zhou, W. Zhang, L. Pan, and Z. Sun, MXene-derived Tin O2n-1 quantum dots distributed on porous carbon nanosheets for stable and long-life Li-S batteries: enhanced polysulfide mediation via defect engineering. Adv. Mater. 33, 8447 (2021).

    Google Scholar 

  25. D.-L. Vu, J.-S. Seo, H.-Y. Lee, and J.-W. Lee, Activated carbon with hierarchical micro–mesoporous structure obtained from rice husk and its application for lithium–sulfur batteries. RSC Adv. 7, 4144 (2017).

    Article  CAS  Google Scholar 

  26. L. Xia, Z. Song, L. Zhou, D. Lin, and Q. Zheng, Nitrogen and oxygen dual-dopeda hierarchical porous carbon derived from rapeseed meal for high performance lithium–sulfur batteries. J. Solid State Chem. 270, 500 (2019).

    Article  CAS  Google Scholar 

  27. Y. Yan, M.M. Shi, Y.Q. Wei, C. Zhao, M. Carnie, R. Yang, and Y.H. Xu, Process optimization for producing hierarchical porous bamboo-derived carbonmaterials with ultrahigh specific surface area for lithium-sulfur batteries. J. Alloys Compd. 738, 16 (2018).

    Article  CAS  Google Scholar 

  28. W. Yao, W. Zheng, J. Xu, C. Tian, K. Han, W. Sun, and S. Xiao, ZnS-SnS@NC Heterostructure as robust lithiophilicity and sulfiphilicity mediator toward high-rate and long-life lithium–sulfur batteries. ACS Nano 15, 7114 (2021).

    Article  CAS  Google Scholar 

  29. Z. Jiang, Z. Zeng, W. Hu, Z. Han, S. Cheng, and J. Xie, Diluted high concentration electrolyte with dual effects for practical lithium-sulfur batteries. Energy Storage Mater. 36, 333 (2021).

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China [Grant No. 51974242]; the China Postdoctoral Science Foundation [Grant No. 2019M653706, 2018M633544]; Postdoctoral Science Foundation of Shanxi Province of China [Grant No. 2018BSHEDZZ120]; the Science and Technology Department of Shaanxi Provincial Government [Grant No. 2021GY-151, 2020JM-450, 2019TD-019]; the Education Department of Shaanxi Provincial Government [Grant No. 18JS058]; and the Xi’an Key Laboratory of Clean Energy [Grant Nos. 2019219914SYS014CG036, 201805033YD11CG17(7)].

Author information

Authors and Affiliations

Authors

Contributions

YY: Conceptualization, Methodology, Writing - Original Draft, Visualization Wei Jing: Investigation, Writing - Original Draft, Data Curation, Visualization CF: Investigation, Validation, Data Curation QD: Formal analysis LZ: Formal analysis JW: Resources CY: Supervision RY: Resources, Writing - Review & Editing, Supervision.

Corresponding authors

Correspondence to Yinglin Yan or Rong Yang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Jing, W., Fan, C. et al. Sakura Derived Hierarchical Porous Carbons As a High-Performance Cathode Host for Lithium-Sulfur Batteries. J. Electron. Mater. 51, 57–67 (2022). https://doi.org/10.1007/s11664-021-09262-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09262-3

Keywords

Navigation