Skip to main content
Log in

Synthesis of Ilmenite NiTiO3 Rods and Effect of pH on Rhodamine B Textile Dye Degradation under LED Visible-Light Irradiation

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

NiTiO3 rods have been synthesized and the influence of pH on their photocatalytic activity under light-emitting diode (LED) irradiation investigated. Ilmenite NiTiO3 rods were synthesized by an ethylene glycol-mediated route at room temperature, followed by calcination in air. The samples were characterized using x-ray diffraction analysis, scanning electron microscopy, ultraviolet–visible (UV–Vis) spectroscopy, and photocatalytic methods. Photocatalytic degradation of rhodamine B was carried out using NiTiO3 rods under LED visible-light irradiation. The synthesized NiTiO3 rods were in pure rhombohedral phase after calcination at 600°C for 2 h. The rods were formed from small nanoparticles of about 30 nm with porous structure. The NiTiO3 rods presented a visible absorbance response and could degrade RhB dye under visible-light irradiation. The results reveal that pH plays an important role in the photocatalytic activity of NiTiO3. The results for the removal efficiency of RhB pollutant at pH values from 1 to 11 showed a maximum at pH 3.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Dong, J. Feng, M. Fan, Y. Pi, L. Hu, and X. Han, Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review RSC Adv. 5, 14610–14630 (2015).

    Article  CAS  Google Scholar 

  2. N. Fajrina, and M. Tahir, A critical review in strategies to improve photocatalytic water splitting towards hydrogen production Int. J. Hydrogen Energy 44, 540–577 (2018).

    Article  Google Scholar 

  3. H. Liu, W. Guo, Y. Li, S. He, and C. He, Photocatalytic degradation of sixteen organic dyes by TiO2/WO3-coated magnetic nanoparticles under simulated visible light and solar light J. Environ. Chem. Eng. 6, 59–67 (2018).

    Article  CAS  Google Scholar 

  4. R. Jain, M. Mathur, S. Sikarwar, and A. Mittal, Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments J. Environ. Manag. 85, 956–964 (2007).

    Article  CAS  Google Scholar 

  5. R. Nagaraja, N. Kottam, C.R. Girija, and B.M. Nagabhushana, Photocatalytic degradation of Rhodamine B dye under UV/solar light using ZnO nanopowder synthesized by solution combustion route Powder Technol. 215–216, 91–97 (2012).

    Article  Google Scholar 

  6. A. Fujishima, and K. Honda, Electrochemical photolysis of water at a semiconductor electrode Nature 238, 37–38 (1972).

    Article  CAS  Google Scholar 

  7. K. Hashimoto, H. Irie, and A. Fujishima, TiO2 photocatalysis: a historical overview and future prospects Jpn. J. Appl. Phys. 44, 8269–8285 (2005).

    Article  CAS  Google Scholar 

  8. K.M. Reza, A. Kurny, and F. Gulshan, Parameters affecting the photocatalytic degradation of dyes using TiO2: a review Appl. Water Sci. 7, 1569–1578 (2017).

    Article  CAS  Google Scholar 

  9. M.M. Byranvand, A.N. Kharat, L. Fatholahi, and Z.M. Beiranvand, A review on synthesis of Nano-TiO2 via different methods J. Nanostruct. 3, 1–9 (2013).

    Google Scholar 

  10. M.A. Ruiz-Preciado, A. Bulou, M. Makowska-Janusik, A. Gibaud, A. Morales-Acevedo, and A. Kassiba, Nickel titanate (NiTiO3) thin films: RF-sputtering synthesis and investigation of related features for photocatalysis CrystEngComm 18, 3229–3236 (2016).

    Article  CAS  Google Scholar 

  11. X. Shu, J. He, and D. Chen, Visible-light-induced photocatalyst based on nickel titanate nanoparticles Ind. Eng. Chem. Res. 2, 4750–4753 (2008).

    Article  Google Scholar 

  12. N. Pugazhenthiran, K. Kaviyarasan, T. Sivasankar, A. Emeline, D. Bahnemann, R.V. Mangalaraja, and S. Anandan, Sonochemical synthesis of porous NiTiO3 nanorods for photocatalytic degradation of ceftiofur sodium Ultrason. Sonochem. 35, 342–350 (2017).

    Article  CAS  Google Scholar 

  13. P.P. Hung, T.T. Dat, D.D. Dung, N.N. Trung, M.H. Hanh, D.N. Toan, and L.H. Bac, Effect of annealing temperature on structural, optical and visible-light photocatalytic properties of NiTiO3 nanopowders J. Electron. Mater. 47, 7301–7308 (2018).

    Article  CAS  Google Scholar 

  14. Q. Li, Y. Xing, L. Zong, R. Li, and J. Yang, Nickel titanates hollow shells: nanosphere, nanorod, and their photocatalytic properties J. Nanosci. Nanotechnol. 13, 504–508 (2013).

    Article  CAS  Google Scholar 

  15. P. Jing, W. Lan, Q. Su, M. Yu, and E. Xie, Visible-light photocatalytic activity of novel NiTiO3 nanowires with rosary-like shape Sci. Adv. Mater. 6, 434–440 (2014).

    Article  CAS  Google Scholar 

  16. A.K. Zak, W.H.A. Majid, M.E. Abrishami, and R. Youse, X-ray analysis of ZnO nanoparticles by Williamson e Hall and size e strain plot methods Solid State Sci. 13, 251–256 (2011).

    Article  Google Scholar 

  17. Y. Fujioka, J. Frantti, A. Puretzky, and G. King, Raman study of the structural distortion in the Ni1−x CoxTiO3 solid solution Inorg. Chem. 55, 9436–9444 (2016).

    Article  CAS  Google Scholar 

  18. G. Busca, G. Ramis, J.M.G. Amores, V.S. Escribano, and P. Piaggio, FT Raman and FTIR studies of titanias and metatitanate powders J. Chem. Soc. Faraday Trans. 90, 3181–3190 (1994).

    Article  CAS  Google Scholar 

  19. Y. Fujioka, J. Frantti, A. Puretzky, and G. King, Raman study of the structural distortion in the Ni1−xCoxTiO3 solid solution Inorg. Chem. 55, 9436–9444 (2016).

    Article  CAS  Google Scholar 

  20. J.B. Bellam, M.A. Ruiz-Preciado, M. Edely, A.J. Szade, and A.H. Kassiba, Visible-light photocatalytic activity of nitrogen-doped NiTiO3 thin films prepared by a co-sputtering process R. Soc. Chem. 5, 10551–10559 (2015).

    CAS  Google Scholar 

  21. V. Chellasamy, and P. Thangadurai, Structural and electrochemical investigations of nanostructured NiTiO3 in acidic environment Front. Mater. Sci. 11, 162–170 (2017).

    Article  Google Scholar 

  22. J. Singh, S. Sharma, S. Sharma, and R.C. Singh, Effect of tungsten doping on structural and optical properties of rutile TiO2 and band gap narrowing Optik 182, 538–547 (2019).

    Article  CAS  Google Scholar 

  23. N.T. Hung, N.H. Lam, A.D. Nguyen, L.H. Bac, N.N. Trung, D.D. Dung, Y.S. Kim, N. Tsogbadrakh, T. Ochirkhuyag, and D. Odkhuu, Intrinsic and tunable ferromagnetism in Bi0.5Na0.5TiO3 through CaFeO3−δ modification Sci. Rep. 10, 1–15 (2020).

    Article  Google Scholar 

  24. P. Yuan, C. Fan, G. Ding, Y. Wang, and X. Zhang, Preparation and photocatalytic properties of ilmenite NiTiO3 powders for degradation of humic acid in water Int. J. Miner. Metall. Mater. 19, 372–376 (2012).

    Article  CAS  Google Scholar 

  25. M.A. Ruiz-Preciado, A. Kassiba, A. Gibaud, and A. Morales-Acevedo, Comparison of nickel titanate (NiTiO3) powders synthesized by sol–gel and solid state reaction Mater. Sci. Semicond. Process. 37, 171–178 (2015).

    Article  CAS  Google Scholar 

  26. N. Bouanimba, N. Laid, R. Zouaghi, and T. Sehili, Effect of pH and inorganic salts on the photocatalytic decolorization of methyl orange in the presence of TiO2 P25 and PC500 Desalin. Water Treat. 53, 1–13 (2013).

    Article  Google Scholar 

  27. H.A.J.L. Mourão, O.F. Lopes, C. Ribeiro, and V.R. Mastelaro, Rapid hydrothermal synthesis and pH-dependent photocatalysis of strontium titanate microspheres Mater. Sci. Semicond. Process. 30, 651–657 (2015).

    Article  Google Scholar 

  28. X. Zhang, J. Yao, D. Li, X. Chen, H. Wang, L.Y. Yeo, and J.R. Friend, Self-assembled highly crystalline TiO2 mesostructures for sunlight-driven, pH-responsive photodegradation of dyes Mater. Res. Bull. 55, 13–18 (2014).

    Article  CAS  Google Scholar 

  29. P. Process, S. Paulo, and S. Paulo, The role of the relative dye-photocatalyst concentration in TiO2 assisted photodegradation process Photochem. Photobiol. 90, 66–72 (2014).

    Article  Google Scholar 

  30. E. Zaraz, L. Torres-mart, D. Sanchez-mart, N. Le, S. Nicol, and G.N. Le, Photocatalytic performance of titanates with formula MTiO3 (M = Fe, Ni, and Co) synthesized by solvo-combustion method Mater. Res. 20, 1322–1331 (2017).

    Article  Google Scholar 

  31. F. Chen, J. Zhao, and H. Hidaka, Highly selective deethylation of rhodamine B: adsorption and photooxidation pathways of the dye on the TiO2/SiO2 composite photocatalyst Int. J. Photoenergy 05, 2003–2017 (2003).

    Article  Google Scholar 

  32. J. Li, Y. Liu, H. Li, and C. Chen, Fabrication of g-C3N4/TiO2 composite photocatalyst with extended absorption wavelength range and enhanced photocatalytic performance J. Photochem. Photobiol. A 317, 151–160 (2016).

    Article  CAS  Google Scholar 

  33. J.M. Herrmann, Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants Catal. Today 53, 115–129 (1999).

    Article  CAS  Google Scholar 

  34. M. Hosseini-Zori, Co-doped TiO2 nanostructures as a strong antibacterial agent and self-cleaning cover: synthesis, characterization and investigation of photocatalytic activity under UV irradiation J. Photochem. Photobiol., B 178, 512–520 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant no. 103.02-2020.27.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luong Huu Bac.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trang, N.T.T., Khang, D.M., Dung, D.D. et al. Synthesis of Ilmenite NiTiO3 Rods and Effect of pH on Rhodamine B Textile Dye Degradation under LED Visible-Light Irradiation. J. Electron. Mater. 50, 7188–7197 (2021). https://doi.org/10.1007/s11664-021-09260-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09260-5

Keywords

Navigation